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Abstract

To ensure a satisfactory QoE (Quality of Experience) and

facilitate system design in speech recognition services, it

is essential to establish a method that can be used to ef-

ficiently investigate recognition performance in different

noise environments. Previously, we proposed a perfor-

mance estimation method using a spectral distortion mea-

sure. However, there is the problem that recognition task

complexity affects the relationship between the recogni-

tion performance and the distortion value. To solve this

problem, this paper proposes a novel performance esti-

mation method considering the recognition task complex-

ity. We confirmed that the proposed method gives accu-

rate estimates of the recognition performance for various

recognition tasks by an experiment using noisy speech

data recorded in a real room.

Index Terms: performance estimation, noisy speech

recognition, recognition task difficulty

1. Introduction

In recent years, speech recognition technology has been

considerably improved by applying a statistical frame-

work. However, current speech recognition systems still

have the serious problem that their recognition perfor-

mance is degraded in the presence of ambient noise. The

degree of the performance degradation depends on the

nature of ambient noise. To ensure a satisfactory QoE

(Quality of Experience) and facilitate system design in

speech recognition services, it is essential to establish a

method that can be used to efficiently investigate recog-

nition performance in different noise environments.

One typical approach is to collect noisy speech data in

a target noise environment and then perform a recognition

experiment. However, this requires a skilled engineer and

is labor and time-consuming. An alternative approach is

to estimate recognition performance based on a distor-

tion value, which represents a spectral distortion between

noisy speech and its original clean version [1, 2, 3].

Previously, we proposed a performance estimation

method using the PESQ (Perceptual Evaluation of Speech

Quality) [4] as a distortion measure. In this method, an
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Figure 1: Overview of the recognition performance esti-

mation.

estimator, which is a function of the distortion value, is

obtained by approximating the relationship between the

recognition performance and the distortion value [3]. It

is, however, well-known that recognition performance

varies according to recognition task complexity. This

means that each individual recognition task requires the

special estimator.

To solve this problem, we propose a novel perfor-

mance estimation method considering the recognition

task complexity. In the proposed method, an estimator,

which is the function of both the distortion value and the

recognition task complexity, is introduced. It can esti-

mate the recognition performance by giving both the dis-

tortion value and the task complexity, and can provide the

special estimator for each individual recognition task by

giving only the task complexity. We evaluate the effec-

tiveness of the proposed method by an experiment using

noisy speech data recorded in a real room.

2. Proposed method

Fig. 1 illustrates the overview of the recognition perfor-

mance estimation. First the distortion value that repre-

sents the spectral distortion between the noisy speech and

its original clean version is calculated. Then the recogni-

tion performance is estimated by using the estimator ex-

Copyright © 2010 ISCA 26-30 September 2010, Makuhari, Chiba, Japan

INTERSPEECH 2010

2042



pressed in the following form [3].

y = f(x) =
a

1 + e−b(x−c)
, (1)

where y and x represent the estimated recognition per-

formance and the distortion value, respectively. The con-

stants a, b, and c correspond to the recognition perfor-

mance for clean speech, the slope of the performance

degradation, and the robustness against the spectral dis-

tortion, respectively. These constants are determined by

approximating the relationship between the recognition

performance and the distortion value for various noise

environments. However, as mentioned above, the recog-

nition performance varies according to recognition task

complexity. Each individual recognition task therefore

requires the special estimator.

To solve this problem, we propose the estimator ex-

pressed in the following form.

y = f(x, α) =
a(α)

1 + e−b(α)(x−c(α))
, (2)

where α is the recognition task complexity. In Eq. (2),

each constant in Eq. (1) is replaced by the function of α.

This is motivated by the hypothesis that the recognition

task complexity affects only the constants in Eq. (1). The

proposed estimator can estimate the recognition perfor-

mance by giving both the distortion value and the task

complexity, and can provide the special estimator for

each individual recognition task by giving only the task

complexity.

In this paper, we adopt the SMR-Perplexity (Square

Mean Root- Perplexity) [5] as a measure of the recogni-

tion task complexity. The SMR-Perplexity is expressed

in the following form.

PSMR =

{
1

n + 1

(√
1

P (w1|·) +

√
1

P (w2|w1)
+

· · ·+
√

1
P (·|w1 · · ·wn)

)}2

, (3)

where P (·|·) is the word occurrence probability. Fig. 2

shows the relationship between the constant a in Eq. (1)

and the SMR-Perplexity. Each point represents the SMR-

Perplexity calculated for one of the recognition tasks and

the constant a in the special estimator for the recognition

task. The details of the recognition tasks are described in

Section 3. It can be seen that the constant a can be repre-

sented by an exponential function of the SMR-Perplexity.

The similar tendency was observed for the constants b and

c. We therefore decided to use the following estimator.

y = f(x, α) =
p1α

q1 + r1

1 + e−(p2αq2+r2)(x−(p3αq3+r3))
. (4)

The constants p·, q·, and r· are determined by approxi-

mating the relationship between the recognition perfor-

mance, the distortion value, and the SMR-Perplexity for

various noise environments and recognition tasks.
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Figure 2: Relationship between the constant a in Eq. (1)

and the SMR-Perplexity.

3. Evaluation

In this section, we evaluate the effectiveness of the pro-

posed method. The noisy speech data generated by arti-

ficially adding noise data to speech data are used for de-

termining the constants of the estimator. In contrast, the

evaluation of the proposed method is done on the noisy

speech data recorded in a real room. This is a realistic

scenario in the sense that the recording cost can be re-

duced in determining the constants of the estimator.

In this experiment, we use the PESQ as a spectral dis-

tortion measure. The PESQ calculates the spectral dis-

tortion and outputs the value as the PESQ score ranging

from −0.5 to 4.5. Note that the higher the PESQ score,

the smaller the spectral distortion.

3.1. Determination of the estimator’s constants

To determine the constants of the proposed estimator, we

prepared the following recognition tasks and the clean

speech data corresponding to each task.

• Grammar-based recognition: The speech data used

are connected-digit utterances, which are the same

as those in the AURORA-2J database [6], except

that the sampling rate is 16 kHz. The grammar al-

lows arbitrary repetitions of digits, a short pause,

and a terminal silence.

• Isolated-word recognition: We used the Tohoku

University-Matsushita spoken word database [7],

consisting of 3,285 isolated words (railway station

names). The dictionary size is set to 50, 100, 200,

400, 800, 1600, and 3285.

• LVCSR (Large Vocabulary Continuous Speech

Recognition): We used two sets of sentence ut-

terances by male speakers, in which the vocabu-

lary size is set to 5k (MID) and 20k (LARGE), in-

cluded in the ASJ-JNAS (Japanese Newspaper Ar-

ticle Sentences) database [8]. The language mod-
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Table 1: SMR-Perplexity for each recognition task.

Recognition task SMR-Perplexity

Grammar-based Connected-digit 11

50 words 50

100 words 100

200 words 200

Isolated-word 400 words 400

800 words 800

1,600 words 1,600

3,285 words 3,285

5k MID 40,588

20k MID 44,073

LVCSR 60k MID 33,381

20k LARGE 33,976

60k LARGE 57,424

els are word 3-gram models with 5k, 20k, and 60k

words [9].

The SMR-Perplexity for each recognition task is summa-

rized in Table 1.

We prepared the in-car noise, the exhibition hall

noise, the train noise, and the elevator hall noise in-

cluded in the Denshikyo noise database [10] as ambi-

ent noise. The noisy speech data were generated by ar-

tificially adding the noise data to the speech data at six

different values of SNR (20, 15, 10, 5, 0,−5 dB). In

this experiment, no noise reduction algorithm is used.

The acoustic models are gender independent monophone

models with 16 Gaussians per state [9]. The feature vec-

tor has 25 components consisting of 12 MFCCs, 12 delta

MFCCs, and a delta log-power.

Using the word accuracy, the PESQ score, and the

SMR-Perplexity obtained for each of the recognition

tasks mentioned above, we determined the constants of

the proposed estimator.

y = f(x, α) =
a(α)

1 + e−b(α)(x−c(α))
, (5)

where a(α) = −0.335(α)0.401 + 99.31,

b(α) = −1.66 · 10−8 (α)1.67 + 4.44,

c(α) = −13.42 (α)−0.00518 + 15.15,

where α is the SMR-Perplexity. Fig. 3 illustrates the

special estimator for each individual recognition task

obtained by substituting only the corresponding SMR-

Perplexity in Eq. (5).

We then estimated the recognition performance by

substituting both the PESQ score and the SMR-Perplexity

in Eq. (5). This corresponds to a so-called closed test in

the sense that the test data are the same as those used for

determining Eq. (5). Fig. 4 shows the relationship be-

tween the true word accuracy and the estimated word ac-
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Figure 3: Special estimator for each individual recogni-

tion task obtained by substituting only the corresponding

SMR-Perplexity in Eq. (5).
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Figure 4: Relationship between the true word accuracy

and the estimated word accuracy.

curacy. The coefficient of determination and the RMSE

(Root Mean Square Error) were 0.99 and 3.4, respec-

tively. We can see that the proposed estimator gives ac-

curate estimates of the word accuracy.

3.2. Evaluation using real data

We recorded noisy speech data in a real room. Fig. 5

outlines the recording setup. The room size is 7.2m ×
7.7m. The room is surrounded by concrete walls. The re-

verberant time, T60, is about 0.7 second. We used two

loudspeakers instead of a human speaker and a noise

source. The volume of the loudspeaker for noise is set

to 3 steps. The close microphone and the remote mi-

crophone are placed at 10cm and 100cm from the loud-

speaker for speech, respectively. The noise data are the

exhibition hall noise and the factory noise included in the

Denshikyo noise database [10]. The speech data are the

same as those described in Section 3.1, expect that ‘800

words’ and ‘1,600 words’ are selected in the isolated-
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Figure 5: The recording setup.

word recognition task.

We estimated the recognition performance by substi-

tuting both the PESQ score calculated from the real data

and the SMR-Perplexity in Eq. (5). Fig. 6 shows the re-

lationship between the true word accuracy and the esti-

mated word accuracy for both the close microphone and

the remote microphone. The coefficient of determina-

tion and the RMSE are 0.98 and 3.2, respectively. We

confirmed that the proposed estimator gives accurate es-

timates of the word accuracy. This result implies that we

can use the artificially generated noisy speech data for

determining the constants of the estimator.

4. Conclusions

Previously, we proposed a performance estimation

method using a spectral distortion measure. However,

there is the problem that recognition task complexity

affects the relationship between the recognition perfor-

mance and the distortion value. To solve this prob-

lem, this paper proposed a novel performance estimation

method considering the recognition task complexity. We

confirmed that the proposed method gives accurate esti-

mates of the recognition performance for various recog-

nition tasks by an experiment using noisy speech data

recorded in a real room. As future work, we plan to es-

timate the recognition performance of unknown recogni-

tion tasks.
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and the estimated word accuracy in the case of the real

data.
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