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ABSTRACT

Based on the equivalence of blind source separation
and adaptive beamforming, this paper introduces a new
algorithm using independent component analysis with
a geometrical constraint. The new algorithm solves
the permutation problem of the blind source separa-
tion of acoustic mixtures, and is significantly less sensi-
tive to the precision of the geometrical constraint than
an adaptive beamformer. A high degree of robustness
is very important since the steering vector is always
roughly estimated in a reverberant environment, even
when the look direction is precise. The new algorithm
is based on FastICA and constrained optimization. It is
theoretically and experimentally analyzed with respect
to the roughness of the steering vector estimation by
using impulse responses of a real room. The effective-
ness of the algorithms for real-world mixtures is also
shown for three sources and three microphones.

1. INTRODUCTION

For many signal processing tasks, such as speech recog-
nition, transmission, or signals classification, a very
good target signal reconstruction of the is essential
when the target signal is disturbed by other sources.
Adaptive beamformers (ABF) and blind source sepa-
ration (BSS) are very effective tools for multichannel
signal reconstruction.

Although the utility of ABFs is well established [1],
they have limited robustness against erroneous param-
eters. This is problematic since the steering vector
is always roughly estimated in a reverberant environ-
ment, as shown in this paper. The methods tradition-
ally used to overcome this sensitivity mostly broaden
the directivity pattern, resulting in a trade-off between
the signal suppression performance and the parameter
sensitivity (e.g., [2],[3]).

Independent component analysis ICA is an emerg-
ing technique for finding statistically independent com-
ponents in a multi-channel signal. The main applica-
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tion is BSS which has been shown to be capable of
recovering multiple sources from their linear mixture if
the sources are independent [4].

In the field of acoustics, convolutive mixtures need
to be separated and this involves estimating many more
parameters (see [5] for references) than when separat-
ing a scalar mixture. Most approaches simplify the
problem into instantaneous separation problems for the
frequency components (e.g., [6],[7]). The scaling and
permutation ambiguities that remain in the recovered
frequency components pose a serious problem, partic-
ularly when the number of sources and microphones
becomes greater than two. Different frequency compo-
nent permutations lead to mixed outputs and degraded
separation results. There are several approaches to
overcoming this problem (e.g., [8]) however, they are
restricted to two sources. Hence, the number of real-
world applications in the acoustics field is still very lim-
ited, and the separation performance is mostly insuffi-
cient [9].

Recent research has indicated an equivalence be-
tween ABF and BSS, e.g., [10],[11]. BSS is only an
intelligent set of ABFs with an adaptive null directiv-
ity aimed in the direction of the unnecessary sounds,
which have been employed by [12]. This equivalence
suggests the application of a geometrical constraint to
ICA to solve the permutation and scaling problem.

Geometrically constrained algorithms have been pro-
posed by [13]-[15]. These contributions do not assess
in detail how a rough estimation of the steering vector
effects the performance of the algorithms. They only
employ the constraint with the assumption that it is
estimated correctly. This assumption is very limiting
because precise information about the steering vector is
very difficult to obtain. The major advantage of using
ICA and geometrical information appears when only a
rough estimation is possible. Furthermore, their algo-
rithms are rather slow iteration type algorithms.

This paper proposes a new geometrically constrained
ICA algorithm that employs the fast convergence prop-



erties of the FastICA algorithm [4]. We also analyze the
behavior of geometrically constrained ICA algorithms
in general with respect to a rough estimation of the
constraint. In Sec. 2, we make basic assumptions on
the mixture, ABF and BSS algorithms, and analyze the
possible reasons for a rough estimation of the steering
vector. The new algorithm is introduced and assessed
theoretically and experimentally in Sec. 3.

2. BLIND SOURCE SEPARATION AND
ADAPTIVE BEAMFORMERS

2.1. Signals and BSS algorithm

In a set sb(t) = [sgarget (t)7 Sgl (t)a v 7S?N71 (t)] ! of
broadband sources, the first source is the target sound
and the others are interfering sources. The sound is
measured with an array of M microphones x°(t) =
[28(t),...,25,(t)]. The observed signals are filtered
and mixed because the room acoustics impose a differ-
ent impulse response h® = between each source s’ and
each microphone z?,.

In the frequency domain, a convolutive mixture can
be written as x/ = HY s/ +n/, where x/ is a narrow-
band signal component filtered from x” with a band-
pass centered at f. For simplicity, the index f is omit-
ted hereafter. H = [hy, ..., hy] consists of the steering
vectors hy, where h; is the steering vector of the tar-
get sound. Only under anechoic conditions, they can
be approximated by the phase shifts caused by the time
delays Ty, with h,, = [e/27Tin  ei27f7un]T When
considering echoes and reverberation, h,, is the sum of
all echo paths.

The goal of the algorithms discussed here is to find
an optimal estimation y; (t) of the target signal siqrget-
To achieve this goal, an unmixing matrix W or a coeffi-
cient vector wy is applied to the vector of observations
as follows:

y=W-x y=wh . x, (1)
where () is the hermitian (conjugate transposed).

Blind source separation uses ICA to estimate the
unmixing matrix W = [wy,..., wy] by making the
output signals as independent as possible. Essentially,
ICA has two steps (W = TH - V). In the first step
(sphering), the matrix V is determined by principle
component analysis (PCA). In the second step (rota-
tion with T), one can use maximization of nongaus-
sianity, nonlinear decorrelation, non-stationary decor-
relation, or spatio-temporal decorrelation to determine
the rotation matrix T [4].
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2.2. ABF with an imprecise estimation of the
steering vector

An ABF minimizes the power of the output signal with
a constraint: the energy of a signal coming from the di-
rection of the target is passed unchanged wf’ hy = ¢;.
This means that the source position has to be known
in advance. It can be estimated by sound localization
methods (e.g., MUSIC [1]), determined by image pro-
cessing, or simply known by geometry.

A major drawback of ABFs is that they rely on
the correct estimation of the steering vector. Since the
impulse response of a room is normally not available,
the steering vector f11 is estimated solely from the time
delays of the direct sound. An estimation error of hy
has two causes: a wrong direction of arrival, or the
existence of strong reverberations. The latter cause is
due to the multiple directions of arrival while only the
direct sound is used for the estimation. The estimation
becomes rough even when the source position is well
known.

To determine the error made by a rough estimation
of fll, we introduce a new measure: the steering vector
error angle (SVA) u. For its definition, we use a gen-
eralized cosine cos(x,y) = |xfy|/|x|ly| to define the
angle between two complex vectors x and y. Let u(f)
be the angle between hy(f) and hy(f) and let a(f)
be the angle between the mixing vectors hy(f) of the
target signal and hy(f) of the jammer signal.

_ o [ iy 1 < |h{"hy| >
u(f) = cos <|h1||fn|> a(f) = cos by |

(2)
Figure 1 shows the SVA p for a real room (sampling
rate 8 kHz, distance between microphones d = 4 cm,
direction of arrival §# = 30°, FFT size: 1024). h, is ap-
proximated by [1,..., ejzm(M*l)d'COS((’)%], and h; is the
actual impulse response measured in real environments
with different reverberation times (for the database see
Sec. 3.3). As seen in Fig. 1, in a reverberant en-
vironment, a much stronger SVA can occur in some
frequency bins (see Fig. 1b) than the SVA caused by a

rough estimation of the source position (see Fig. 1b).

3. GEOMETRICALLY CONSTRAINED ICA

3.1. Derivation of new algorithm

The algorithm is based on negentropy maximization
(3) which has been proposed by [4]. In this approach,
the negentropy is approximated by the nonlinear func-
tion G() with the derivation g(). As usual in ICA ap-
proaches, a PCA is applied first. Figure 2 shows a scat-
ter plot of the sphered signals z = Vx. After sphering,
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(b) Correct estimation Af = 0°, T = 128 ms

Figure 1: SVA p induced by (a) incorrect estimation
(Af = 20°) and (b) reverberation (solid line). The
effect of reverberation exceeds the effect of an imprecise
estimation. The critical angle (see Sec. 3.2) of this
mixture is shown as a dashed line.

we have the following equations:

arg min B{G(|¢1"2[*)} (3)

with the constraint:
W{{fll = t{{Vfll =C1 (4:)

Although most BSS algorithms claim to be uncon-
strained (using (3) only), they normally employ the as-
sumption that T = [t1,--- ,tx]¥ is unitary and, there-
fore, t; has a unit length. This assumption is necessary
to avoid a convergence to the point of origin and to re-
duce the dimensionality of the optimization problem
since it can be undertaken on the unit hypersphere.

To combine BSS with the constraint, we have to
weaken the assumption because a strict assumption col-
lides with the constraint (Fig. 2). The column vectors
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of T need to be unitary, but they do not require a unit
length. A degeneration solution is avoided by the con-
straint.

According to [4], the Kuhn-Tucker points of (3) are

E{z-g(t"2)} = 5t ()

when the derivation is performed on the unit circle
[t|> = 1.

We can also use this condition for points of t that
are not on the unit circle. If t is a Kuhn-Tucker point
on the unit hypersphere, then t' = 4t (for any 7) is a
Kuhn-Tucker point of the Lagrangian that constrains
the solution to vectors of the same norm. According the
theory of FastICA, the maximal nongaussianity only
says something about the direction of the unmixing
vector while the norm is not decisive. We are look-
ing for the vector that satisfies the constraint (4) and
has the highest negentropy of all vectors with the same
norm.

Hence, we do not change the solution of (5) by pro-
jecting it to the constraint. We obtain the following
algorithm, with the convergence shown in Fig. 2.

gt B E{zg(t{'z)} + Bts

= % Rlga) s O
k+1new _ tk+1
‘ e, Vi @
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Figure 2: Convergence of the constrained FastICA al-
gorithm. The constrained ICA algorithm starts at the
solution of the ABF and converges on the constraint
line to the correct solution.



The new algorithm starts with t© = §, = Vhy. If
the estimation of h; is correct, the estimation itself
is already the correct solution. Then, the algorithm
converges according to (6)-(8) to a Lagrangian saddle
point. Since the algorithm does not indicate whether
it is a minimum or maximum of the cost function, an
additional maximality check is introduced into the al-
gorithm.
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Figure 3: Cost function on the constraint

3.2. Theoretical assessment

The Newton method guarantees that the algorithms
will converge against a Lagrangian saddle point. Figure
3(a) shows that there is only one global minimum in the
case of a precise estimation of the steering vector hy .
When the estimation becomes rough, two local min-
ima and a local maximum appear (Fig. 3(b)). The two
minima belong to the two signals. This means that
since convergence is ensured, the algorithm converges
either towards the target or the jammer. A convergence
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towards the jammer signal amplifies the jammer signal
and suppresses the target signal. This is equivalent to
the permutation problem of the unconstrained BSS.

The shape of the Lagrangian and the starting point
of the iteration control the convergence. A convergence
can be guaranteed when t = Vﬁl is closer to the
correct solution t; than to the permutated solution to
because it is in the convergence range of t;.

In the following, we derive a condition for the SVA
p and the mixing matrix that ensures that t, is close
enough to t;. Thereto, we define angles p:, between
£, and t; and L, between £, and to; and we restrict
ourselves to N = M = 2 and equivalent contributions
from both sources.

Let R = E{xx} be the spatial covariance matrix
of the observed signals. Since it is a Hermitian matrix,
it has M non zero real eigenvalues A = diag[A1, ..., Ay
and M orthogonal eigenvectors U = [uy,...,uy] be-
longing to them.

In the above defined case, R has the following eigen-

. — hitho _ 2wH _
vectors: wp = plipe, Ar = orhj (hi + hy), uy =

IE:E;I and Xy = 02hf(h; — hy), and the sphering

matrix can be written as V. = A~Y/2U. Using the
eigenvalue decomposition of R, the definition of the
scalar product in (2), and the angles o and p defined
in Sec. 2.2, we obtain

cos(iun) = f{ftl _ B{IYHVhl _ fl{{frl}l1
[t ||t |t |[t1] [t ||t
_ h¥h, +hf'h,  hi'h —hfh,
- 1]t 1]t
_cosp — cot asin
B 1]t
cos(uy,) = itz _ Sina 9)

lEullta] 60 ][to]

Combining the results in (9), we can define the con-
vergence range: The algorithm will converge to the tar-
get (at least) when the miss-estimation is smaller than
a critical angle pcritical in (10).

1+ cosa

cot 1 < €Ot fheritical = (10)

sin «

This property is shown in Fig. 4 as a function
of the SVA p. The SIR in this figure is obtained by
20 log[(wiH), /(Wi H),] for the adaptive beamformer
or 20 log[(WH);1 /(WH), ] for the constrained ICA al-
gorithm with a single frequency f of the Fourier trans-
form of a real room’s impulse response H described in
the next section. The separation performance of the
adaptive beamformer decreases continuously with the



increase of the SVA, while the algorithm has a con-
stantly good performance until the critical angle. This
means that the adaptive beamformer converges cor-
rectly only when SVA is around 0°. The proposed ICA,
however, converges more robustly against the wide range

of SVA.
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Figure 4: Comparison of the robustness of the new
algorithm (solid line) and the MV beamformer (dashed
line)

For a real-world acoustical application, it is impor-
tant to analyze (10) with realistic numbers for the SVA
v and « in each frequency bin. Figure 1 also shows the
critical angle. In both cases, the SVA p is in almost all
frequency bins under the critical angle.

3.3. Real-world assessment

We performed several tests with realistic mixtures. Ja-
panese language sounds were mixed with room im-
pulse responses measured in real rooms. The rever-
beration times were 0, 150 and 300 ms. The impulse
responses where N = M = 3 were from the RWCP
database, and a complete description is available at
http://tosa.mri.co.jp/ sounddb/index.htm. Further-
more, the algorithm has been tested with real-world
mixtures for N = M = 2.

Figure 5 shows the signal-to-interference-ratio (SIR)
in each frequency bin. The SIR is defined according
to [16] and [17] as 1010g[%, Yger )/ ¢ Vammes (1)
with Yrarger the portion of the target and Yjammer =
Y1 — Yrarget the portion of the jammer in the output
signal. At almost all frequencies the algorithm con-
verged towards the correct solution and yielded a high
SIR. Negative values indicated an incorrect permuta-
tion, and this occured mostly in the low frequency
range, but also occasionally in the higher frequency
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ranges. This is attributed to a large estimation error
caused by to the multi-path mixture and amplification
by the PCA.

Incorrect steering vectors caused by (a) an incor-
rect look direction and (b) reverberation were used in
all plots in Fig. 5. We achieved a great improvement in
the frequency SIR of more than 10 dB, even in the 3x 3
(N = M = 3) case. This demonstrates the effective-
ness of the new algorithm in its major domain when a
rough estimation of the steering vector is available. Al-
though the computational cost has yet to be analyzed,
the convergence is very fast due to the Newton method
of the underlying FastICA algorithm.
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Figure 5: Real-world simulation results in N = M =3

4. CONCLUSION

We introduced a new ICA algorithm with a geometri-
cal constraint and showed its effectiveness both theo-
retically by defining a convergence range, and experi-



mentally by using impulse responses from a real room.
The new algorithm solves the permutation problem of
the BSS of acoustic mixtures, particularly when there
are more than two microphones and sources.
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