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Abstract—Acoustical signals are often corrupted by other
speeches, sources, and background noise. This makes it necessary
to use some form of preprocessing so that signal processing systems
such as a speech recognizer or machine diagnosis can be effectively
employed. In this contribution, we introduce and evaluate a new
algorithm that uses independent component analysis (ICA) with
a geometrical constraint [constrained ICA (CICA)]. It is based
on the fundamental similarity between an adaptive beamformer
and blind source separation with ICA, and does not suffer the
permutation problem of ICA-algorithms. Unlike conventional
ICA algorithms, CICA needs prior knowledge about the rough
direction of the target signal. However, it is more robust against an
erroneous estimation of the target direction than adaptive beam-
formers: CICA converges to the right solution as long as its look
direction is closer to the target signal than to the jammer signal. A
high degree of robustness is very important since the geometrical
prior of an adaptive beamformer is always roughly estimated in a
reverberant environment, even when the look direction is precise.
The effectiveness and robustness of the new algorithms is proven
theoretically, and shown experimentally for three sources and
three microphones with several sets of real-world data.

Index Terms—Blind source separation (BSS), independent
component analysis (ICA), machine diagnosis, minimum variance
beamforming, signal enhancement, statistical signal processing.

I. INTRODUCTION

FOR MANY signal processing tasks, such as speech recog-
nition, transmission, or signal classification, the target

signal must be very well reconstructed when it is disturbed by
other sources. Adaptive beamformers (ABF) and blind source
separation (BSS) are effective tools for multichannel signal
reconstruction.

Adaptive beamformers were introduced by Frost [1] and have
been expanded by several contributers, e.g., [2], [3]. It can be
shown formally that they provide optimal suppression of the
jammer under certain conditions. However, as shown in this
paper they have limited robustness against erroneous param-
eters, particularly the delay vector in each frequency bin [4].
This is problematic since the delay vector is always roughly esti-
mated in a reverberant environment, as shown in this paper. The
methods traditionally used to overcome this sensitivity mostly
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broaden and, thereby, flatten the directivity pattern, resulting in
a trade-off between the signal suppression performance and the
parameter sensitivity (e.g., [5], [6]).

Independent component analysis (ICA) is an emerging
technique for finding statistically independent components in a
multi-channel signal. The main application is BSS which has
been shown to be capable of recovering multiple sources from
their linear mixture if the sources are independent [7].

Due to the time-delayed superposition of the sources and re-
flections from the walls, the mixtures are convolutive in the field
of acoustics. The separation of convolutive mixtures involves es-
timating significantly more parameters (see [8] for references)
than when separating instantaneous mixtures. Frequency-do-
main approaches simplify the problem into instantaneous sepa-
ration problems for the frequency components (e.g., [9], [10]).
The scaling and permutation ambiguities left in the recovered
frequency components become a serious problem. Different per-
mutations of the frequency components lead to mixed outputs
and degraded separation results.

There are several approaches to overcome this problem, e.g.,
[11], [12]. These algorithms are very time consuming or re-
duce the spectral resolution of the unmixing filter, therefore the
scaling and permutation problem is still the main obstacle to the
method. Moreover, when there are more than two sources and
two microphones, it is hard to solve the permutation problem.
Mainly due to these problems, the number of real applications
in the acoustics field is still very limited and the separation per-
formance is not sufficient [12].

Recent research has indicated an equivalence between ABF
and BSS, e.g., [13]. BSS is an intelligent set of ABFs with an
adaptive null directivity aimed in the direction of the unneces-
sary sounds [14]. This equivalence suggests the application of
a geometrical constraint to ICA to solve the permutation and
scaling problem.

In many applications the source position is roughly known in
advance since it can be estimated by sound localization methods
(e.g., MUSIC [15]), determined by image processing or simply
known by geometry. The high sensitivity of the ABF to param-
eter changes however requires a very precise estimation of the
source position that cannot be normally achieved by the afore-
mentioned methods. To make it worse, even a moderate rever-
beration makes a delay vector estimated by the accurate position
of the jammer source unreliable.

Geometrically constrained algorithms have been proposed by
[16] and [17]. Their contribution does not assess in detail how
a rough estimation affects the performance of the algorithm. In
[18] a geometrically constrained ICA algorithm (CICA) was in-
troduced that employs the fast convergence properties of the
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FastICA [7]. In this paper, we analyze the behavior of CICA
formally, and compare its performance to other ICA and beam-
forming algorithms with a large set of machine sounds.

In Section II, we make basic assumptions about the mixture,
and discuss the standard technologies for multichannel signal
processing, namely the ABF and ICA algorithms. Section III
analyzes possible reasons for the estimation of the delay vector
being imprecise and evaluates the consequences for the adaptive
beamformers. The new algorithm is introduced and its robust-
ness and effectiveness are assessed theoretically in Section IV.
The experimental results are given in Section V.

II. ASSUMPTIONS ABOUT THE MIXTURES

In a set target of broadband
sources, the first source is the target sound and the others are
interfering sources. The sound is measured with an array of
microphones . The observed sig-
nals are filtered and mixed because the room acoustics impose
a different impulse response between each source and
each microphone

In the frequency domain, a convolutive mixture can be written
as , where is a narrowband signal
component filtered from with a bandpass centered at . For
simplicity, the index is omitted hereafter. Small bold letters
mean vectors, capitalized bold letter represent matrices.

consists of the delay vectors , where is the
delay vector of the target sound. Only under anechoic condi-
tions, they can be approximated by the phase shifts caused by
the time delays with .
When considering echoes and reverberation, is the sum of
all echo paths. The covariance matrix of observed signals is

(1)

where is the Hermitian (conjugate transposed) and E is the
expectation operator. Since is a Hermitian matrix, it has
nonzero eigenvalues and orthogonal
eigenvectors belonging to them.

The goal of the algorithms discussed here is to find an optimal
estimation of the target signal target. To achieve this goal,
a coefficient vector , or an unmixing
matrix

... (2)

is applied to the vector of observations as follows:

(3)

A. Blind Source Separation With ICA

Blind source separation uses ICA to estimate the unmixing
matrix . The estimation consists of two steps: sphering with

and rotating with

(4)

In the first step (sphering), the matrix is determined by prin-
cipal component analysis (PCA)

(5)

where are the sphered signals (the intermediary result of the
sphering step).

In the second step, spatio-temporal decorrelation [19], non-
linear decorrelation [20], [21], maximization of nongaussianity
[22] or nonstationary decorrelation [11] can be used to deter-
mine the rotation matrix . Similar to in (2), can be
written as .

B. Adaptive Beamformer

In the following, we restrict ourselves to the class of min-
imum variance (MV) beamformers. The optimization problem
for the MV beamformer is to minimize the energy of the output
signal

(6)

with a constraint which ensures that the energy of a signal
coming from the direction of the target is passed without
changes

(7)

where is an arbitral constant and is an estimation and hence
is the estimated and not necessarily correct delay vector.

Using Lagrangian multipliers, the cost function is obtained as

(8)

Fig. 1 shows an example of a scatter plot of the observed sig-
nals and when . The random vector is dis-
tributed around the mixing vectors and which are added
in this figure. It is possible to draw potential coefficient vectors
in this scatter plot since they are in the same space. The coeffi-
cient vectors with the same output energy (6) are connected in
this figure.

The energy function whose contour lines are also drawn in
Fig. 1 is driven by the quadratic form . Hence, the
cost function has a bowl shape with one global minimum at the
point of origin, and the constraint in (7) is necessary to prevent
the algorithm from going to the global (unwanted) minimum

. The constraint is a line (or in the general
case a hyperplane), drawn in Fig. 1. It has a strong impact on
the performance of the beamformer as shown in [15].
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Fig. 1. Scatter plots of the observed signals with the contour lines of Frost’s
cost function (6).

The optimal coefficient vector is shown in Fig. 1

(9)

Due to the equivalence between ABF and ICA under ideal
conditions as shown in [13], the solution in (9) is also the op-
timal ICA solution. An important consequence is that the vector

of the rotation matrix that reconstructs the target signal is
simply the delay vector of the target signal transformed with a
sphering matrix (except for an amplification factor )

(10)

III. EFFECT OF A ROUGH ESTIMATION OF THE DELAY VECTOR

A. Reasons for an Imprecise Estimation of

A major drawback of ABFs is that they rely on the correct
estimation of the delay vector. Since the impulse response of a
room is normally not available, the delay vector is estimated
solely from the time delays of the direct sound by

... (11)

where is the distance between the microphones, is the speed
of sound and is the estimated direction of arrival.

An estimation error of has two causes: a wrong direction
of arrival , or the existence of reverberation. The latter is due to
the multiple directions of arrival while only the direct sound is
used in (11) for the estimation. When reverberation is present,
the estimation becomes imprecise even when the source position
is well known.

To determine the error included in a rough estimation of ,
we introduce a new measure: the delay or steering vector error
angle (SVA) . For its definition, we use a generalized cosine

(12)

Fig. 2. Definition of angles � and �. The axes are the same as those of Fig. 1.

to define the angle between two complex vectors and . In
(12), is the inner product of the two complex valued vec-
tors and . Let be the angle between the roughly esti-
mated delay vector and the actual mixing vector
and let be the angle between the mixing vectors of
the target signal and of the jammer signal. For the visual-
ization of the definition see Fig. 2. Since and are defined in
the (complex) space of demixing vectors, they are not identical
with the spatial angles, e.g., between the locations of the sources

(13)

Fig. 3 shows the SVA in two rooms with and without rever-
beration and with two levels of preciseness of the look direction.
The two levels of reverberation were achieved by using impulse
responses from an anechoic room ms and a normal
room ms . The impulse responses for the anechoic
room where derived by using the first portion of a measured im-
pulse response. The real vector was calculated by applying a
Fourier transform to the impulse response. It is clearly seen that
in the reverberant case an SVA may exist even though the look
direction is precise [Fig. 3(c)].

B. Consequences for the Adaptive Beamformer

In order to assess the signal suppression properties of the ABF
when the estimation of is rough, this subsection evaluates the
eigenstructure of the covariance matrices used for the consid-
ered beamformers. In the derivation we restrict ourselves to the
case where . The results are also valid in a general
case.

The output signal consists of two components; describes
the contribution of the target signal source and of the jammer
source to the output signal

(14)
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Fig. 3. SVA �(f) induced by a rough estimation and reverberation. The effect of reverberation is greater than the effect of an imprecise estimation. �� is the
difference between the estimated look direction and the actual look direction. (a) Correct estimation �� = 0 , t � 0 ms. (b) Incorrect estimation �� = 10 ,
t � 0 ms. (c) Correct estimation �� = 0 , t = 128 ms. (d) Incorrect estimation �� = 10 , t = 128 ms.

The eigenanalysis of the covariance matrix of the ob-
served signals allows a further insight into these coefficients.
The covariance matrix can be written as

(15)

with and indicating the powers of the two sources. In
order to simplify the eigenanalysis, we assume that both source
components contribute the same power. This is satisfied if both
sources have similar intensities and are nearly in the same dis-
tance from the array. Then, the variances are considered to be
equal and the mixing vectors to have the
same norm . Additionally the noise is neglected

.
Under these assumptions, has the following eigenvectors

and eigenvalues:

(16)

(17)

with . The proof is given in the Appendix.
To reduce the complexity, we treat the nominator and the de-

nominator of and separately resulting in

(18)

(19)

(20)

The complete derivation is shown in the Appendix. Equations
(18)–(20) describe the influence of the jammer and the target
signal on the output signals with the angles and defined in
(13). They make it possible to treat the robustness of the output
signal as a function of the roughness of the delay vector . If
(and only if) is estimated correctly ( or ), the
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Fig. 4. Attenuation of the target signal p (solid) and the jammer p (dashed)
as a function of �. � is 50 and 60 .

coefficient vector is orthogonal to the jammer signal. The target
signal is not attenuated

If is roughly estimated, the ABF degrades drastically.
Fig. 4 shows the effect of a rough estimation of the delay vector
when and vary. For a precise estimation , the
beamformer works properly: it passes the target signal without
changing it and minimizes the jammer signal. When the esti-
mation error increases, the performance is reduced. For higher
values of the target signal experiences the same attenuation as
the jammer signal. The actual shape of the curves is influenced
by ; when is smaller, the decline of the attenuation starts
earlier.

IV. PROPOSED CONSTRAINED ICA

A. Derivation

To avoid the undesirable high sensitivity of the estimation of
which is very detracting as shown in Section III-B, we are

employing ICA to make the algorithm more robust. As men-
tioned above, several ICA approaches are possible. We consider
two cost functions to be applicable to the development of a con-
strained algorithm. The first is based on time-delayed decorrela-
tion [10], [11] and the second is based on negentropy maximiza-
tion (FastICA) [22]. As is usual in ICA approaches, sphering
(5) is employed. Fig. 5 shows a scatter plot of the sphered sig-
nals. After sphering, we have the following equations based on
time-delayed decorrelation

(21)

with a constraint to the target signal

(22)

Fig. 5. Convergence of the proposed constrained ICA algorithm. The algorithm
starts at the solution of the ABF and converges on the constraint line to the
correct solution.

or similarly based on negentropy maximization with an arbitrary
nonlinear function with its derivation

(23)

with a constraint to the target signal

(24)

where is a sphering matrix, is a rotation matrix and is
a constant (see Section II-A). The function that was used in the
experiments for this paper is .

Although most ICA algorithms claim to be unconstrained
they normally employ the constraint that is unitary. It is nec-
essary to avoid convergence to the point of origin and reduce
the dimensionality of the optimization problem since it can be
accomplished on the unit hyper sphere, shown for two micro-
phones in Fig. 5. Further, the constraint significantly simplifies
the derivation of the optimization function.

However, the constraint that the matrix is unitary implicitly
considers source signals with a unit variance

is unitary

is also unitary. (25)

The underlying assumption of convolutive BSS is obviously that
and, therefore, . The algorithms tend to flatten

the power spectrum. Several methods have been proposed to
avoid this problem, e.g., [21].

When using ICA with the geometrical constraint of the ABF,
we have to weaken the assumption and use since the strict de-
ployment of the constraint collides with the constraint in (22) or
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Fig. 6. Cost function on the constraint. (a) Precise estimation � = 0 , � = 27 . (b) Rough estimation � = �12 , � = 27 .

(24) as shown in Fig. 5. The column vectors need to be perpen-
dicular, but they do not have to have a unit length. The degraded
solution is avoided by the constraint.

Unfortunately, weakening the constraint makes the derivation
of the optimization rule less simple and the employment of the
time-delayed decorrelation approach impossible. Hence, only
the FastICA algorithm is taken into account in the further dis-
cussion. We investigate the deflationary algorithm proposed by
Bingham [22] as a basis. According to [23], the Kuhn–Tucker
points of (23) are

(26)

when the derivation is made on the unit circle .
We can also use this condition for points of that are not

on the unit circle. If is also a Kuhn–Tucker point on the unit
hypersphere, then (for any ) is a Kuhn–Tucker point
of the minimization problem that constrains the solution to vec-
tors of the same norm. According the theory of FastICA, the
maximal nongaussianity only says something about the direc-
tion of the unmixing vector while the norm is not decisive. We
are looking for a vector that satisfies the constraint (24) and that
has the highest negentropy of all vectors with the same norm.

Hence, we do not change the solution of (26) by projecting it
to our constraint (24). We obtain the following algorithm, with
the convergence shown in Fig. 5

(27)

(28)

(29)

Equations (27)–(29) describe the iteration of our new CICA
algorithms. The index is the iteration index. The new algo-
rithm starts with . If the estimation of
is correct, the estimation itself is already the correct solution

. Then, the algorithm converges according to
(27)–(29) to a stable point of the minimization problem .

B. Theoretical Assessment

The new algorithm should be evaluated in terms of its conver-
gence properties. The Newton method guarantees that the algo-
rithms will converge to a stable point. Fig. 6(a) shows that there
is only one global minimum in the case of a precise estimation
of the delay vector .

When the estimation is rough, two local minima appear
[Fig. 6(b)]. The two minima belong to the two signals. This
means that since convergence is ensured, the algorithm con-
verges either towards the target or the jammer. A convergence
towards the jammer signal amplifies the jammer signal and sup-
presses the target signal. This is equivalent to the permutation
problem of unconstrained BSS.

The shape of the minimization of the constraint and the
starting point of the iteration control the convergence. Con-
vergence can be guaranteed when is closer to the
correct solution than to the permutated solution because
it is then in the convergence range of . Both parameters are
influenced by the SVA in the PCA space . By using earlier
results (18) and lemma 1 in the Appendix, it can be assessed as
follows:

(30)

And similarly we can define as the angle between and
in the PCA space

(31)



KNAAK et al.: GEOMETRICALLY CONSTRAINED INDEPENDENT COMPONENT ANALYSIS 721

Fig. 7. Vectors in the space of the sphered signals. The axes are the same as
those of Fig. 5.

Convergence can be guaranteed as long as
(Fig. 7)

(32)

(33)

With (32), we can define the convergence range of our pro-
posed CICA algorithm; it will converge to the target when the
misestimation is smaller than the critical angle in (33).
Otherwise it will converge to the permutated solution (jammer
signal). Since the critical angle is , where is the angle be-
tween and [see Fig. 2 and (13)], the algorithm converges
to the correct solution as long as its look direction is closer to
the target signal than to the jammer signal.

It should be noted that this condition always holds when
is not in the angle spanned by and . Since is defined
by the absolute value of the scalar product, can only have a
positive sign. Hence, the algorithm may also converge to the
correct solution if is larger than the critical angle. Equation
(33) is a sufficient condition for the convergence.

This condition allows us to compare the CICA algorithm with
the ABF (see Fig. 8). CICA is significantly more robust against
a misestimation of . The separation performance of
the ABF decreases continuously with a growth of the estimation
error (dashed curve), while the CICA algorithm has a constantly
good performance until the critical angle in (33).

For a real-world acoustical application, it is important to an-
alyze (32) with realistic numbers for and in each frequency
bin. As shown earlier in Section III-A, the main error is intro-
duced by the reverberation. A similar result can be seen here
(Fig. 9). In both cases the SVA is in almost all frequency bins
under the critical angle.

The frequency range in the reverberant case needs to be ad-
dressed separately. The angle , and thereby the critical angle

, are very small in the low frequency range. Even a small
estimation error causes a wrong permutation. In that frequency

Fig. 8. Comparison of the robustness of the CICA algorithm (solid line) and the
adaptive beamformer (dashed line). SIR (signal to interference ratio) is defined
as the ratio of the target and jammer signal contributions to the output.

range, the authors recommend the use of the conventional Fas-
tICA algorithm and solve the permutation with maximizing the
correlation to the solutions in the other frequency bins.

V. REAL-WORLD ASSESSMENT

We compared the new CICA algorithm with the ICA algo-
rithms, Infomax (INFO), and the minimum variance adaptive
beamformer (MVB) by using several tests. We measured im-
pulse responses in a real room, and made mixtures by con-
volving these with the sources. The real room setup is depicted
in Fig. 10. Its reverberation time is 150 ms. Two

or three observation channels (microphones)
and sources were used.

As the signals of interest, we utilized the sound probes of elec-
trical motors. The interfering sound here was the typical back-
ground noises of an assembly hall (like other motors, sewing and
drilling noise, etc.). When the number of used microphones was
two, a sound probe was interfered by one interferer, and when
the case of three microphones, a sound probe was interfered by
two interference sources. Investigations were carried out for ten
probes: Four probes are of fault-free motors: six probes con-
sisted an unusual sound caused by a fault (commutator fault).
Such a setup is common in acoustical machine diagnosis with
the objective to assess the state of machine by its sound. In
an earlier publication the algorithm has also been tested with
Japanese speech signals successfully [18].

First the algorithms are evaluated by the improvement in the
signal to interference ratio (SIR). The SIR is defined according
to [20] and [24] as target with

target the portion of the target and target
the portion of the jammer in the output signal. Since this mea-
sure is based on the energy portions contributed by the different
sources, it does not say anything about a potential distortion
of the target signal. Therefore, a second measure is employed
which measures how well the sound probes from the fault-free
motors can be distinguished from the faulty ones. Two classes
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Fig. 9. Comparing the SVA (solid line) for a real room with the critical angle (dotted line) of this mixture. (a) Without reverberation, t � 0ms, �� = 20 ; (b)
with reverberation t = 150 ms, �� = 20 .

Fig. 10. Diagram of the real room and the setup of the microphones and loudspeakers with (a) two and (b) three sources and observation channels. The reverber-
ation time is t = 150 ms.

can be separated in a certain feature space (typical features of
electrical motors are loudness, roughness, energy at some fre-
quencies, etc.) if the distance between the centers of the two
classes is larger than the standard deviation of each class in the
feature space. Since the Mahalanobis distance is defined as the
distance between these centers normalized by the standard de-
viation it is a good measure of the distinctness of the classes and
it must be greater than one to classify the classes automatically.
In the following, the Mahalanobis distance is calculated for the
original, disturbed, and reconstructed signals [25].

When two microphones are used, the sound probes are inter-
fered with one interferer. Infomax does not require the direc-
tion of the motor sound, while MVB and CICA need this in-
formation. However, the ICA algorithms face the permutation
problem, what MVB and CICA do not. When
the permutation problem in Infomax is solved by estimating
the directivity patterns as proposed in [26]. Of course, CICA
and MVB do not need to solve the permutation problem. To as-
sess the robustness of CICA and MVB, the look direction cor-
responds to the direction of the motor sound ( , ‘g’)
in the first case and differs from the actual direction by 20
( , ‘u’) in the second case.

In the test with measured impulse responses [Fig. 11(a) with
two microphones and two sources], the delay vector is always
erroneous, since it is estimated by the phase shifts of the direct
sound while the actual delay vector is also influenced by the re-
verberation. Therefore, the MVB fails completely in this envi-
ronment. The blind algorithms and CICA improve the SIR suffi-
ciently. The same result can be seen with the Mahalanobis clas-
sifier (Table I): only signals reconstructed with the ICA-based
algorithms have a Mahalanobis distance larger than one that
makes it possible to distinguish between the motor sets.

Finally, the tests with measured impulse responses were
repeated with target signals interfered with two jammer sources

where CICA was compared to the ABF.
The ABF faces the same obstacle described above. Hence,
only CICA shows good results here. Fig. 12 shows the SIR
improvement for all the motors.

VI. CONCLUSION

This paper introduced and assessed a new geometrically con-
strained ICA algorithm. It showed the algorithm’s effectiveness
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Fig. 11. Improvement in the SIR for N = M = 2 with measured impulse
responses (t = 150 ms). (a) For all motors, (b) average SIR improvement.

TABLE I
MAHALANOBIS DISTANCES

and robustness theoretically and experimentally. The new algo-
rithm solves the permutation problem of BSS of acoustic mix-
tures, particularly when the number of sources and microphones
is greater than two. Although prior knowledge is needed, the in-
formation does not need to be precise.

APPENDIX

PROOFS

Lemma 1: The covariance matrix has the eigenvectors
and eigenvalues

with .
Proof: A potential eigenvector is a linear combination of

and : . Let
and . It is worth to mention that the inner product

Fig. 12. Improvement in the SIR for N = M = 3 with measured impulse
responses (t = 150 ms) for all motors (a), average SIR improvement (b).

of complex valued vectors is not commutative, in opposite the
real valued vectors: , where is the conjugate-
complex. And, therefore . An eigenvector is defined
as follows:

A comparison of coefficients yields the following equations:

Let , then

The solution of the quadratic equation is
, and hence the eigenvalues

is
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When and with a normalization the

Corollary 1: As a special case, the eigenvectors and eigen-
values for a real valued covariance matrix are

(34)

(35)

Lemma 2: The nominator of is

The nominator of is

The denominator of both components is

Proof: The inverse of a hermitian matrix can be written
using the eigenvalues and eigenvectors

(36)

To reduce the complexity, we treat the nominator of and
and the denominator separately, starting with the nominator

of

The first addend is with the eigenvectors of lemma 1

It is

The last terms are scalar and can be cancelled

Additionally, the following holds:

Therefore,

The same is applicable to the second addend

Using the geometrical meaning of the scalar product can
be simplified significantly

Further simplification can be made using the sine addition for-
mula
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Similarly, for the nominator of

Finally, for the denominator
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