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I
n everyday environments, we are frequently immersed by 
unwanted acoustic noise and interference while we want to 
listen to acoustic signals, most often speech. Technology 
for assisted listening is then desired to increase the effi-
ciency of speech communication, reduce listener fatigue, 

or just allow for enjoying undisturbed sounds (e.g., music). For 
people with normal hearing, assisted listening devices (ALDs) 
mainly aim to achieve hearing protection or increase listening 
comfort; however, for hearing-impaired individuals, as the 

most prominent user group so far, further progress of assisted 
listening technology is crucial for better inclusion into our 
world of pervasive acoustic communication. 

MotIvatIon
The essential functionality of ALDs comprises three steps (see Fig-
ure 1): acquiring the signals of interest, enhancing desired and 
removing undesired components from the acquired signals, and 
presenting the enhanced signal(s) to the listener. 

Given the acquired microphone signals, the efficiency of such 
devices is largely determined by the performance of the signal pro-
cessing algorithms for signal enhancement and presentation. Con-
sidering that multiple microphones are now common in many 

e
a

r
 p

h
o

to
—

©
is

to
c

k
p

h
o

to
.c

o
m

/x
r

e
n

d
e

r
a

s
s

is
t

e
d

 l
is

t
e

n
in

g
 s

ig
n

—
©

 is
to

c
k

p
h

o
to

.c
o

m
/n

c
a

n
d

r
e

e
a

r
p

h
o

n
e

s
—

im
a

g
e

 l
ic

e
n

s
e

d
 b

y
 in

g
r

a
m

 p
u

b
li

s
h

in
g

[Simon Doclo, Walter Kellermann, Shoji Makino, and Sven Nordholm]

[Exploiting spatial diversity  

using multiple microphones]

Multichannel  
Signal Enhancement 

Algorithms for Assisted 
Listening Devices



 IEEE SIGNAL PROCESSING MAGAZINE [19] MARCh 2015

listening devices (e.g., hearing aids or mobile phones) and allow to 
exploit the spatial diversity in addition to the spectrotemporal 
diversity, multichannel algorithms appear to be decisive for cur-
rent and future ALDs. Moreover, in contrast to single- microphone 
signal enhancement algorithms, which have not been shown to 
improve speech intelligibility but may reduce, e.g., the listening 
effort, multimicrophone signal enhancement algorithms are capa-
ble of increasing speech intelligibility [1], especially when the 
sound sources have different spatial characteristics. 

Although microphone array signal processing, e.g., for telecon-
ferencing systems, is a well-established field dealing with similar 
problems and signals [2], the problem setting for ALDs exhibits a 
number of distinctive features. First, the microphone placement is 
typically constrained by the fact that the devices should be incon-
spicuously placed at the user’s head and should capture the rele-
vant spatial information of the sound sources. Moreover, while 
all signal enhancement algorithms ideally aim to remove the 
undesired components and leave the desired components undis-
torted, the compromises need to be chosen differently depend-
ing on the application domain: for ALDs, distortion of the 
desired signal or annoying noise artifacts will typically be penal-
ized more than a higher level of residual undistorted noise, and 
the balance between reduced listener fatigue, increased speech 
intelligibility, and subjective quality plays an even greater role 
than in other speech communication devices. Finally, for bin-
aural systems that are expected to dominate the future markets, 
preservation of the critical binaural cues as necessary for a cor-
rect spatial perception is crucial [3], not just for the desired sig-
nal, but also for the residual noise and interferers. 

Scope
In this article, we will discuss several algorithms for multimicro-
phone signal enhancement and presentation that are suitable for 
ALDs. The considered acoustic scenario is defined by a single 
source of interest (target source) at any point in time, while mul-
tiple interfering point sources (e.g., competing speakers) and 

additional incoherent noise (e.g., sensor noise, diffuse back-
ground noise) may be active simultaneously (see Figure 2). It is 
assumed that some knowledge is available to distinguish the tar-
get source from the interfering sources once they are sufficiently 
enhanced or separated. Bearing in mind that the wearers of ALDs 
may move their heads, the relative positions of both the target 
source as well as the interfering sources must be considered as 
time-varying, so that source localization and tracking is required. 

The fundamental concept of all considered multimicrophone 
algorithms relies on spatial and/or spectrotemporal diversity, 
i.e., the desired components should be separated from the 
undesired components in the spatial and/or time-frequency 
domain. The algorithms hence correspond to spatial filtering 

[FIg1] the main processing blocks in an aLD.

[FIg2] a scenario with the target source ( ),s t0  point-like 
interferers ( ),s tp  incoherent noise sources, and microphones at 
the user’s head.
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(often termed beamforming) and filtering in the time-frequency 
domain, respectively. In addition to exploiting the statistics of 
the available observations, the optimum filter design should 
also use available prior knowledge, e.g., the estimated or 
assumed position of the target source. This implies that, in this 
article, blind source separation 
(BSS) algorithms [4] are only con-
sidered in forms that allow the 
inclusion of such prior knowledge. 
Aside from some target-related 
knowledge, we assume natural 
unpredictable scenarios that may 
be arbitrarily complex and time-
varying. This implies that the fil-
ters must be estimated from 
currently available observations 
and cannot be learned in advance, 
thus algorithms that are based on trained models (e.g., using 
nonnegative matrix factorization) are not considered in this 
article. In addition, in time-varying environments, the estima-
tion of the spatial and spectrotemporal information from short 
observation intervals is of crucial importance, so we will focus 
on techniques exploiting second-order statistics, keeping the 
variance of the estimated quantities small. 

Signal model
According to the acoustic scenario in Figure 2, we consider P  
point sources ( ),s tp  with t  as the discrete time index, in a noise 
field of unknown coherence, which are recorded by an array of 
M  microphones. The target source is denoted by ( ) .s t0  Assum-
ing the acoustic paths between the sources and the micro-
phones to be linear and time-invariant, the mth  microphone 
signal ( )x tm  is given by the convolutive mixing model 

 ( ) ( ) * ( ) ( ), ,x t h t s t n t m M1,m p m
p

P

p m
0

1

f= + =
=

-

/  (1)

where ( )n tm  denotes the noise component in the mth  micro-
phone signal, ( )h t,p m  is the room impulse response (RIR) 
between the pth  source and the mth  microphone, and *  
denotes convolution. Typically, the signals are processed in the 
short-time Fourier transform (STFT) domain, i.e., 

 ( , ) ( ) ( , ) ( , ), ,x k h k s k n k m M1,m p m
p

P

p m
0

1

f, , ,= + =
=

-

/  (2)

where ( , ), ( , )x k s km p, ,  and ( , )n km ,  denote the STFTs of the 
respective time-domain signals, with ,  representing the frame 

index and k  representing the fre-
quency bin index, and where ( )h k,p m  
denotes the acoustic transfer function 
(ATF) between the pth  source and 
the mth  microphone. Note that (2) 
is strictly speaking only valid for 
frames that are significantly longer 
than the RIR length. When this is not 
the case, a convolutive transfer func-
tion model should be used. For con-
ciseness, we omit the dependency on 
the indices k  and ,  in the remainder 

of this article. In vector form, the equation set (2) can be written as 

 ,s s sx h h n h vp
p

P

p0 0
1

1

0 0= + + = +
=

-

/  (3)

with ,x xx M
T

1 g= 6 @  and n  and h p  defined similarly, and h0  
denoting the ATF of the target source. This signal model will 
form the basis for the subsequent description of the main signal 
processing tasks with ALDs, i.e., source localization, signal 
enhancement, and signal presentation. 

Signal acquiSition
For ALDs in realistic acoustic environments, the ATFs include 
the microphone characteristics, room acoustics, and filtering 
effects due to the user’s head. The diffraction and reflection 
properties of the user’s head, pinna, and torso are described by 
the so-called head-related transfer function (HRTF), which is 
the frequency- and angle-dependent transfer function between a 
sound source and the user’s ear drum in an anechoic environ-
ment [5]. The pair of left and right HRTFs contain the so-called 
binaural cues of a sound source: the interaural time difference 
(ITD) and the interaural level difference (ILD), which are result-
ing from the time difference of arrival (TDOA) between both 
ears and the acoustic head shadow, respectively. In contrast to 
point sources, the spatial characteristics of incoherent noise can 
not be properly described by the ITD and ILD, but rather by the 
interaural coherence (IC) [5]. Binaural cues play a major role in 
spatial awareness, i.e., for source localization and for determin-
ing the spaciousness of auditory objects, and are important for 
speech intelligibility due to binaural unmasking, e.g., [5]. 

For capturing the relevant spatial information and binaural 
cues of the sound sources, in principle, at least two micro-
phones are required, which are preferably mounted on both 
sides of the head. Ideally, the microphones are placed as close as 
possible to the corresponding loudspeakers that present the sig-
nals to the ear drums to allow the recreation of the authentic 
spatial impression for the listener. In typical ALDs today, two or 
three microphones are available on each side of the head, with 

x1(k, )

x2(k, )

y (k, )

xM (k, )

w1(k, )∗

w2(k, )∗

wM (k, )∗

. .
 . Σ

[FIg3] the filter-and-sum structure.
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spacings ranging from 7 mm to 15 mm. Since the positions of 
the microphones do not coincide with the ear drum, and the 
acoustic path between the loudspeaker and the ear drum differs 
from the HRTF, the overall response of the device should be 
equalized to match the open-ear HRTF [3]. 

Source localization
The objective of source localization is to estimate the position or 
the direction of arrival (DOA) of the target source (and possibly the 
interfering sources), be it for supporting signal extraction or for 
furnishing signal presentation algorithms with spatial 
information. 

Signal extraction
The main task is to extract from the given recordings an undis-
torted version of the target source while all undesired compo-
nents are suppressed. Two generic approaches can be used to 
achieve this: 

 ■ One can aim at separating all point sources and then pick 
the target source based on additional knowledge. 

 ■ One can directly use the additional knowledge to extract 
the target source only.

Intuitively, the second approach promises a lower overall algorith-
mic complexity for a desired performance, as it essentially requires 
only to separate the target source from all other sources, and obvi-
ously avoids the complexity of estimating the potentially large 
number of irrelevant sources in a given acoustic scene. In addi-
tion, the first approach may be limited to setups where the num-
ber of microphones is larger than the number of point sources. 

Signal extraction is typically achieved using a filter-and-sum 
structure, depicted in Figure 3, where each microphone signal xm  
is passed through a linear filter w*

m  and the outputs are summed. 
The output signal y  is then given in the STFT domain by 

 y w x w x*
m

m

M

m
H

1
= =

=

/  (4)

with .w w ww * * *H
M1 2 f= 6 @  The time-domain output signal 

may then be computed using the inverse STFT. 
While, in principle, additional knowledge may describe source 

characteristics in both the time-frequency domain or the spatial 
domain, in this article we will mainly consider additional know-
ledge in the spatial domain, assuming that the sources are physic-
ally located at different positions. Typical prior spatial knowledge is 
then given by, e.g., the estimated or assumed DOA of the target 
source relative to the head. With this spatial information, we can 
support signal extraction algorithms, e.g., a beamformer pointing 
toward a given DOA or BSS algorithm exploiting the target DOA. 
These algorithms will be covered in more detail in the sections 
“Data-Independent Beamforming” and “Statistically Optimum Sig-
nal Extraction.” 

Signal preSentation
After extracting the target source, the enhanced signal is to be 
presented to the listener, where we need to distinguish between 

monaural and binaural systems. For a monaural ALD, i.e., a sin-
gle device on one ear, it seems obvious to just feed the enhanced 
signal to the loudspeaker of this device. For a binaural ALD, i.e., 
a system jointly considering and processing the microphone 
signals of both ears, different signals can be presented to the left 
and the right ear. This can generate an important binaural 
advantage since the auditory system can exploit binaural cues 
and the signal processing algorithms can use information from 
all microphones on both devices [6, ch. 14]. On the other hand, 
in a bilateral system where both devices work independently, 
this potential is not fully exploited since not all microphone sig-
nals from both devices are combined. To exploit the full poten-
tial of binaural processing, both devices need to cooperate with 
each other and exchange information or signals, e.g., through a 
wireless link. 

Besides signal extraction, a second major task should be 
achieved in binaural ALDs: the auditory impression of the acoustic 
scene, i.e., the spatial perception of the target source, the residual 
interfering sources and noise, should be preserved. This can be 
achieved either by so-called binaural rendering of the monaural 
output signal of the signal extraction algorithm, or by directly 
incorporating the desired binaural cues into the spatial filter 
design. These algorithms will be covered in more detail in the sec-
tion “Presentation of the Enhanced Signals.”

Source LocaLIzatIon
In principle, any source localization algorithm that can handle 
multiple nonstationary wideband sources can be used for ALDs [6, 
ch. 6]. This includes direct methods based on steered-response 
power (SRP) [2, ch. 8] or subspace methods [Multiple Signal Clas-
sification (MUSIC)] [7] and the large and popular class of indirect 
two-step methods based on TDOA estimation and a subsequent 

0 20 40 60 80 100 120 140 160 180
0

125

250

375

500

625

750

ϕ (°)

τ(
µs

)

Free-Field
Head Model (Woodworth Schlosberg)
Head Model (Duda, Martens)
Measured HRTF

[FIg4] tDoas for different azimuthal directions i (0° = front, 
180° = back) based on free-field assumption, measured hrtFs 
and two head models, respectively.



 IEEE SIGNAL PROCESSING MAGAZINE [22] MARCh 2015

geometric inference of the source position. The latter class com-
prises cross-correlation-based [8] and cross-relation-based algo-
rithms, e.g., [9] and [10]. 

The main difference of using these algorithms for ALDs com-
pared to their conventional use results from the fact that the 
microphones are typically mounted close to the user’s head. 
Therefore, the propagation paths of a point source to the different 
microphones can not be simply modeled by the free-field TDOA, 
but the filtering effects of the head should be taken into account. 
As HRTFs vary between individuals, the results produced by 
source localization algorithms will always suffer from some 
uncertainty if the individual HRTFs and the microphone topology 
are not exactly known. This is especially true for binaural sys-
tems, where the relative microphone positions are user depend-
ent and not fixed. However, useful approximations can be 
employed, which are, e.g., based on 
spherical head models [11] or meas-
ured HRTFs. The TDOAs for different 
source directions based on the free-
field assumption, measured HRTFs, 
and typical head models is depicted 
in Figure 4. Alternatively, for bin-
aural systems, computational audi-
tory  scene analys is  (CASA) 
algorithms [12] can be used for local-
izing multiple sources, e.g., incorporating a probabilistic model of 
the binaural ILD and ITD cues [13].

Given the microphone topology, cross-correlation-based algo-
rithms such as the generalized cross-correlation with phase trans-
form (GCC-PHAT) [8] can be used to localize a single source for 
ALDs when the head filtering effects are taken into account. How-
ever, when multiple sound sources are present, identifying the 
correct source-specific TDOAs typically becomes very difficult [14]. 
Generalizations of the GCC, such as SRP-PHAT [2, ch. 8], coher-
ently add up signals originating from a certain point in space to 
estimate the source likelihood at this position. While conceptually 
suited for an arbitrary number of microphones and sources, they 
involve considerable computational complexity for sufficient spa-
tial resolution and are inherently sensitive to reverberation.

More general cross-relation-based algorithms, e.g., [9] and 
[10], aim at system identification via cross-relation and are natur-
ally suited for identifying relative head-related impulse responses 
(HRIRs) from the source to the different microphones, delivering 
TDOA information as long as the direct path can be detected in the 
identified relative impulse responses. While the adaptive eigen-
value decomposition method in [9] is able to identify relative 
HRIRs only for a single source while exploiting nonstationarity, 
the BSS-based method in [10] can robustly localize multiple 
sources even in noisy and moderately reverberant environments. 

Finally, subspace-based source localization algorithms such 
as MUSIC [7] are in principle also suitable for arbitrary numbers 
of microphones and sources (assuming the number of sources 
is known). As they essentially estimate the source positions 
using the eigenvectors corresponding to the largest eigenvalues 
of a spatial covariance matrix, the estimates for this covariance 

matrix must be sufficiently reliable for every frequency bin. 
Since subspace-based algorithms are separating the signal and 
noise subspace, where the noise needs to be white or whitened, 
this is typically difficult to achieve for wideband nonstationary 
sources in time-varying environments where only short obser-
vation intervals can be considered. 

Data-InDepenDent beaMForMIng
A simple but popular way for enhancing the target source in 
ALDs is data-independent beamforming, where the filters w  in 
(4) are designed to enhance sources arriving from the (estimated 
or assumed) target DOA and suppress sources not arriving from 
this DOA, but do not account for the statistics of the microphone 
signals. Various data-independent beamformers include delay-
and-sum beamformers and superdirective or differential beam-

formers [2, ch. 2], [15]. For the 
design of such beamformers, the 
target DOA and the complete micro-
phone topology need to be known. 
Data-independent beamformers 
have mainly been used for monaural 
devices [16], where robustness 
against microphone mismatch is 
crucial due to the closely spaced 
microphones [17], [18]. For bin-

aural devices, data-independent beamformers have also been pro-
posed, which, however, suffer from spatial aliasing due to the 
distance between the microphones and require consideration of 
the head filtering effects, e.g., [19]. 

StatIStIcaLLy optIMuM SIgnaL extractIon
In contrast to data-independent beamformers, data-dependent sig-
nal enhancement methods exploit both the spectrotemporal as 
well as the spatial information of the microphone signals to extract 
the target source s0  (or a filtered version of it) from all interferers 
and noise [20], possibly equalizing the reverberation effect caused 
by the ATFs’ .h0  Since the filters adapt to the current statistics of 
the typically nonstationary signals, this will be treated as an opti-
mum multichannel filtering problem in the sequel. 

Relying on estimates of either the interference and noise statis-
tics or the target source statistics, two main classes of supervised 
optimum multichannel filtering will be discussed in the sections 
“Minimum Variance Distortionless Response Beamformer” and 
“Multichannel Wiener Filtering.” In addition, BSS algorithms, in 
particular the variants exploiting target-related prior information 
for constraining the optimization problem to explicitly separate 
the target source, will be considered in the section “Blind Source 
Separation.” Techniques for estimating the required second-order 
statistics will be presented in the section “Estimation of Interfer-
ence and Noise Statistics.” 

minimum Variance diStortionleSS  
reSponSe beamformer
The minimum variance distortionless response (MVDR) beam-
former is a special case of a linearly constrained minimum 
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variance (LCMV) beamformer [20], [21], where the power of the 
output signal is minimized subject to a single constraint assuring 
an undistorted response for the target source (or a filtered version 
of it). Different versions of the MVDR beamformer exist, either 
using the complete target ATF, the direct path of the ATF, or the 
relative transfer functions (RTFs). In practice, the MVDR beam-
former is often implemented using a so-called generalized sidelobe 
canceler (GSC) structure [22]–[25]. 

DERIvAtION Of thE MvDR bEAMfORMER
The power spectral density (PSD) of the filter-and-sum beam-
former output signal y  is given by 

 { } { } ,E y E w xx w w wH H H2
xxU= =  (5)

where { }E xxHxxU =
9  denotes the crosspower spectral density 

matrix of the observed microphone signals. The distortionless 
response constraint requires that the desired component in the 
output signal ys0  is equal to the target signal ,s0  i.e., 

 .y s sw h
!

s
H

0 0 00 = =  (6)

Hence, by solving the constrained minimization problem 

 , ,min 1subject tow w w hH H
0w xxU =  (7)

we obtain the MVDR filter [20], [21] 

 .w
h h

h
H
0

1
0

1
0

MVDR
xx

xx

U
U= -

-

 (8)

By assuming the target source, the interfering sources and the 
noise to be mutually uncorrelated and of zero mean, the 
crosspower spectral density matrix xxU  can be written using (3) as 

 ,h hs s
H

0 0xx vv0 0z UU = +  (9)

where { }E vvHvvU =
9  denotes the crosspower spectral density 

matrix of the interference and noise components and 
.{| | }E ss s 0

2
0 0z =  Using (9), it can be shown that the MVDR filter 

in (8) can be written as [20] 

 .w
h h

h
H
0

1
0

1
0

MVDR
vv

vv

U

U
=

-

-

 (10)

As can be seen, the MVDR filter is solely determined by the 
crosspower spectral density matrix of the observations and the 
ATFs .h0  However, due to the high order and the typically time-
varying nature of the corresponding RIRs ( ),h t,m0  blindly iden-
tifying these impulse responses is generally difficult if at all 
possible. Hence, instead of using the complete RIRs, one can 
consider only the direct path of the RIRs (corresponding to the 
free-field HRIR for the estimated or assumed target DOA), 
which may, however, lead to target signal distortion, or one can 
use the so-called RTFs. 

+
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[FIg5] the gSc implementation of an MvDr beamformer
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MvDR USING Rtfs
By constraining the desired component in the output signal to 
be equal to the speech component at an arbitrarily chosen refer-
ence microphone r  [24], the constraint in (6) becomes 

 ,y s h sw h
!

,s
H

r0 0 0 00 = =  (11)

which is equivalent to ,1w hH
0 =u  where the RTF h0

u  is defined as 

 .h h
h

h
h

h
h1h h

, ,

,

,

,

,

,

r r r r

M
T

0
0

0

0

0 1

0

0 2

0

0
g g= =

9u ; E  (12)

By substituting the ATFs h0  with the RTFs h0
u  in (8) and (10), 

the modifed MVDR filter is obtained as 

 .hw w
h h

h
h h

h
,r H H0

0
1

0

1
0

0
1

0

1
0

MVDR MVDR
xx

xx

vv

vv

U

U

U
U= = =)

-

-

-

-

u
u u

u

u u

u
 (13)

Note that blind identification of RTFs is significantly easier than 
blind identification of ATFs. When noise and interference are 
absent, this can simply be achieved by dividing the crosspower 
spectral densities of the microphone signals. When noise and/or 
interference are present, methods exploiting the nonstationarity 
of speech or based on the generalized eigenvalue decomposition 
have been proposed, e.g., [24] and [25]. 

GSC
The constrained optimization problem of the MVDR beamformer 
in (7) can be transformed into an unconstrained optimization 
problem, leading to the highly popular GSC structure [22]–[25], 
consisting of three main blocks (see Figure 5): 1) a fixed beam-
former (FB), ensuring the fulfillment of the constraint in (6) or 
(11), 2) a blocking matrix (BM), creating so-called noise refer-
ences ,um  and 3) a multichannel interference canceler ,gm  
minimizing the residual interference and noise in the output of 
the FB that is correlated with the noise references. If the target 
signal leaks into the noise references due to a mismatched BM 
(e.g., caused by RTF estimation errors or by DOA errors, micro-
phone mismatch, and reverberation when using free-field 
HRIRs), the target signal will be partially canceled as well. To 
mitigate this target signal cancellation, the interference 
canceler is typically adapted only during periods when the tar-
get source is inactive; see, e.g., [23]. Moreover, several tech-
niques have been proposed to reduce the speech leakage 
components in the noise references, e.g., [24], [25], and/or limit 
the distorting effect of the remaining speech leakage [23], [26], 
[27], e.g., by imposing a quadratic inequality constraint or by 
using the so-called speech-distortion-regularized GSC [27]. 

APPLICAtION IN ALDs
The GSC or one of its more robust variants can be considered as 
the current state-of-the-art solution for monaural hearing devices 

with an end-fire microphone array configuration, e.g., [28]–[30]. 
A very popular variant is the adaptive directional microphone 
(ADM) [15], [28], [29], where the fixed beamformer and the BM 
are differential beamformers forming a front- and back-oriented 
cardioid pattern, and an adaptive scalar minimizes the energy 
arriving from the back hemisphere. A two-microphone imple-
mentation was indeed shown to achieve a considerable speech 
intelligibility improvement for hearing aid users (about 3.4 dB 
improvement for three babble noise sources) [29]. 

multichannel Wiener filter
The second popular class of multichannel signal enhancement 
techniques is associated with the multichannel Wiener filter 
(MWF), e.g., [2, ch. 3, 6, 14], [27], [31]. It produces a minimum 
mean square error (MMSE) estimate of either the target source [2, 
ch. 3], the speech component at an arbitrarily chosen microphone 
[2, ch. 6,14], [31], or a reference speech signal [2, ch. 14], [27]. To 
trade off speech distortion and noise reduction, the so-called 
speech-distortion-weighted MWF was introduced [27], [31]. 

Similarly to the MVDR using RTFs, the MWF neither 
requires a priori information about the microphone configura-
tion nor the position of the target source, making it an appeal-
ing approach from a robustness point of view. On the other 
hand, relying on the second-order statistics of the desired and 
undesired signal components implies that, for the assumed 
nonstationary processes, these statistics must be estimated with 
sufficient accuracy at all times; cf. the section “Estimation of 
Interference and Noise Statistics.” 

MMSE EStIMAtION fOR thE MWf
The MWF aims to extract the target source by minimizing the 
mean square error (MSE) between the (unknown) source signal 
s0  and the beamformer output, i.e., 

 { } { } .argmin argminE s y E sw w xH0
2

0
2

MWF
w w

= - = -  (14)

Assuming the target source and the interfering sources and 
noise to be uncorrelated, the solution of (14) is given by 

 { } ,E sw x h*
s s

1
0

1
0MWF xx xx 0 0zU U= =- -  (15)

requiring the ATFs h0  and the target source PSD s s0 0z  to be 
estimated, which is a nontrivial task. However, similarly to the 
MVDR using RTFs, we can also design an MWF aiming at 
extracting the speech component at an arbitrarily chosen refer-
ence microphone r  by 

 ,argmin E h sw w x,r
H

0 0
2

MWF
w

= -u " ,  (16)

which yields 

 { } .E h s hw x h h h,
* *

,
*

r s s
H

s s r
1

0 0 0 0
1

0 0MWF xx vv0 0 0 0z zU U= = +- -
u ^ h  (17)

Although it appears that the ATFs and the target source PSD are 
required to compute (17), the (rank-1) crosspower spectral 
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density matrix h hs s
H

0 00 0z  can be estimated from the second-
order statistics of the microphone signals; cf. the section “Esti-
mation of Interference and Noise Statistics.” 

SPEECh-DIStORtION-WEIGhtED MWf 
The MMSE criterion in (16) can be easily generalized to allow 
for a tradeoff between noise reduction and speech distortion 
[27], [31] by introducing a weighting factor [ , ]:0 3!n

 ,argmin E h s s Ew w h w v,r
H H

0 0 0 0
2 2

SDW
w

n= - +u " ", ,  (18)

which is referred to as the speech-distortion-weighted MWF 
(SDW-MWF). The solution of (18) is given by 

 .hw h h h ,
*

s s
H

s s r0 0
1

0 0SDW vv0 0 0 0z n zU= +
-

u ^ h  (19)

The smaller the factor n  is chosen, the smaller the resulting 
speech distortion. If ,1n =  the MMSE criterion (16) is 
obtained. If ,12n  the residual noise level will be reduced at 
the expense of increased speech distortion. 

RELAtIONShIP bEtWEEN MWf AND MvDR 
It is interesting to note that the MWF can be decomposed as an 
MVDR beamformer, exploiting the spatial information of the 
target and interfering sources, followed by a single-channel 
Wiener filter (SWF) [2, ch. 3], [32], i.e., 

 ,w
h h

h
y y y y

y y

H
0

1
0

1
0
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+
-
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-

u
u u

u

1 2 3444 444 1 2 344 44
 (20)

where y ys sz  and y yv vz  denote the PSDs of the desired and unde-
sired components at the output of the MVDR beamformer 
wMVDRu  using RTFs. 

APPLICAtION IN ALDs
In [1], a three-microphone MWF implementation for a monaural 
hearing device was evaluated at different test sites and compared 
with other single- and multimicrophone noise reduction tech-
niques. In this study it was shown that overall the MWF achieved 
the largest speech intelligibility improvements (up to 7 dB), even 
in highly reverberant environments. 

blind Source Separation
Generalizing the approach of extracting a single desired source, 
BSS algorithms aim at extracting multiple sources from observed 
mixtures without requiring prior knowledge on the positions of 
the sources and the microphones, spatiotemporal signal statistics, 
or the mixing system. Moreover, they do not need any reference 
information on the activity of the sources in the spectrotemporal 
domain. On the other hand, they do require knowledge on the 
total number of sources and can only separate sources that can be 
modeled as point sources. Considering time-varying mixing sys-
tems, we disregard approaches that perform BSS based on learn-
ing from a large amount of data and focus on independent 
component analysis (ICA)-based methods that are—similar to 

adaptive filtering approaches—suited to time-varying acoustic 
scenes [4], [33]–[35]. 

For the following, we rewrite the STFT signal model in (3) as 

 ,sx h n Hs np
p

P

p
0

1

= + = +
=

-

/  (21)

describing M  noisy observations x  of the convolutive mixture of 
P  point sources .sp  To obtain estimates of the original sources ,ps
a linear demixing/separation system W  is applied, consisting of 
M P#  filters with frequency response ,wmp  , , ,m M0 1f= -  

, , .p P0 1f= -  The P  separated signals ,yq  stacked in the vec-
tor ,y  are then obtained as 

 .y W x W Hs W nH H H= = +  (22)

Known methods for identifying optimum demixing filters W  
are based on the assumption that the signals to be separated are 
mutually statistically independent and that enforcing statisti-
cally independent outputs yq  of the demixing system yields 
good estimates of the desired separated source signals .ps  For 
the mostly assumed case where the number of microphones is 
larger than or equal to the number of sources ( ),M P$  an 
appropriate generic cost function ( )J ,  for frame ,,  describing 
an estimate of the Kullback–Leibler divergence between the 
joint probability density function (pdf) of the output signals yq  
and the desired independent outputs, can be formulated as [4, 
ch. 4]: 

 ( ) ( , )
( ( , ))

( ( , ))
,logK

p y

p1 y
J

,

,
K

y L
q

P

q
0 0

1

0

1ICA
PLy

q

, ,b m

l m

l m
=

3

m l= =

-

=

-

t

t

%
/ /  (23)

where ( ( , ))p y,y L qq l mt  denotes an estimate for the L-variate pdf 
of a segment of length L  of the qth  output signal ,yq  and 

( ( , ))p y,PLy l mt  denotes an estimate for the PL-variate joint pdf 
for all P  output signals. Averaging over K  frames accounts for 
the nonstationarity of the data, while the windowing function 

( , ),b m  describes the weight of a block average at time m  for the 
cost function at time ,,  in a similar way as for recursive least 
squares adaptation. Forming gradients of this cost function, or 
simplified versions, with respect to the demixing matrix W  
allows for maximization of statistical independency with respect 
to individual data frames (online adaptation, , ( , )K 1 0,b m= =  
for ),,!m  as well as for an entire recording (offline adaptation, 

, )K 1 constant2 b =  [35]. 
It should be noted that using the statistical independence 

assumption only, the separation system W  can at best be 
obtained up to a linear filtering uncertainty and a permutation 
of the outputs, and thus cannot itself identify the inverse mixing 
system which would solve the deconvolution problem and per-
fectly dereverberate the source signals [36]. 

Numerous algorithms have been proposed for ICA of convol-
utive mixtures, which are often categorized as either time-
domain or frequency-domain algorithms. Time-domain 
algorithms estimate the demixing system W  as finite impulse 
response filters [35], whereas frequency-domain algorithms 
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formulate the demixing problem as a scalar source separation 
problem for each frequency independently (instantaneous ICA), 
and implement scalar ICA algorithms for each STFT bin [33], 
[36], [37]. 

Similar to adaptive filtering, where time-domain approaches 
imply a significantly higher computational complexity for 
obtaining a similar performance as frequency-domain 
approaches, frequency-domain implementations of ICA (FD-
ICA) are computationally more attractive. On the other hand, if 
these are straightforwardly formulated as independent ICA 
problems in each STFT bin, the resulting demixing system does 
not perform a linear but a circular convolution, which is inade-
quate for demixing a linear mixing system [35]. As an immedi-
ate consequence, the so-called internal permutation and scaling 
problems result: as the outputs of any unconstrained ICA sys-
tem are only determined up to an unknown scaling factor and a 
permutation of their order, for FD-ICA the order and the scaling 
of the outputs may be different for each STFT bin. Therefore the 
outputs of the scalar ICA units have to be realigned so that for a 
given output channel qy  all frequency bins belong to the same 
source [37] and are properly scaled, e.g., by minimizing the 
average power difference of the outputs qy  relative to the inputs 
xm  (minimum distortion principle) [38]. 

In the acoustic signal extraction context, the mechanism of 
BSS based on ICA has been shown to be equivalent to a set of 
P  adaptive beamformers, each of which aims to extract one 
source by suppressing all other sources, thereby exploiting the 
spatial diversity of the microphone signals [39]. Note that for 
adaptive beamforming, the DOA or the RTFs of the target 
source should be known, and that it can adapt the required 
statistics only with given source activity information, while 
ICA does not need such information. 

APPLICAtION IN ALDs
To illustrate the spatial filtering capacity of ICA, Figure 6 depicts 
the overall transfer function W HH  from a given source position in 
a reverberant environment for a null-steering (delay-and-subtract) 

beamformer and one output channel of an ICA system, thereby 
demonstrating the actual interference suppression performance in 
a reverberant environment [40]. The improved spatial null 
achieved by ICA confirms the hypothesis that, due to capturing all 
correlated components belonging to the same source in the same 
output, ICA does not only suppress the direct path but also reflec-
tions of an interfering source, e.g., [40]. Nevertheless, one has to 
bear in mind that the suppression of reflections results from a 
compromise in the spatial directivity, which a null-steering beam-
former cannot offer. Obviously, using the same number of micro-
phones, ICA cannot use more spatial degrees of freedom than a 
supervised beamformer, and therefore the spatial selectivity of ICA 
remains limited to what an optimum and ideally controlled beam-
former can achieve, as long as it uses the same statistics for deter-
mining its parameters [39]. 

The fact that ICA does not require prior knowledge about 
source positions, microphone topology, and source activity, and 
can adapt well during the activity of multiple sources, renders it 
a highly attractive method for ALDs in complex acoustic envi-
ronments with unpredictable interference and noise, and usu-
ally unknown source and microphone topologies. 
Unfortunately, however, ICA systems that can robustly and 
quickly separate more than three sources in real-world environ-
ments have not been presented yet, so that scenarios with an 
unknown number of interferers cannot be handled by such a 
generic ICA system. 

eStimation of interference and noiSe StatiSticS
The performance of the signal extraction algorithms discussed in 
the sections “MVDR Beamformer” and “Multichannel Wiener Fil-
ter” critically depends on the estimates of the statistics of the 
desired and the undesired signal components, respectively. When 
implementing these algorithms, it is typically assumed that there 
is a domain where either the desired or the undesired components 
can be observed alone. While in selected cases, stationarity 
assumptions may hold reliably to justify a predetermined estimate 
[41], it must usually be assumed that the statistics of both the 
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desired and the undesired components vary in an unpredictable 
way and call for instantaneous estimates. 

In the spectrotemporal domain, voice activity detection and 
speech presence probability estimation typically aim at identifying 
regions in the STFT domain where only undesired components 
are present, e.g., [6, ch. 5], [42]. Obviously, this is very difficult for 
the given scenario with interfering speech sources that naturally 
occupy the same frequency range and whose temporal activity pat-
tern is generally not known, especially if their signal level is com-
parable to the level of the target source in any of the microphone 
signals. Therefore, the desired and undesired components can 
usually only be separated along the time axis. For example, for 
computing the MWF according to (19), it is typically assumed that 
the interference and noise can be observed during noise-only peri-
ods, so that with the assumed uncorrelatedness of noise and 
desired speech, the crosspower spectral density matrix h hs s

H
0 00 0z  

can be estimated as 

 ,h hs s
H

0 0 xx vv0 0 .z U U-  (24)

where xxU  is estimated continually and vvU  during periods of 
interference and noise only. As a fundamental problem, however, 
all these methods still suffer from the fact that the interference 
and noise estimates cannot be updated while the target source is 
active, so that they are prone to failure with nonstationary noise 
and interference, such as human speakers. 

On the other hand, in the spatial domain, reference informa-
tion for all the interference and noise components can be obtained 
by suppressing the target source. Here, the spatial selectivity 
allowed by the microphone array topology constitutes the main 
limitation. Exploiting the spatial domain for obtaining interfer-
ence and noise reference information is an inherent feature of the 
GSC (cf. the section “MVDR Beamformer”), where the BM aims to 
suppress the target source. For moving sources and multipath 
propagation scenarios, robust adaptation schemes for the BM have 
already been proposed, e.g., [23]. These concepts still require 
knowledge about the activity of the target source, as the BM 
should only be adapted when the target source is dominant. If the 
DOA of the target source is known, its activity can be monitored 
by directing both a delay-and-sum beamformer and a delay-and-
subtract beamformer in this direction and inferring the activity 
from the ratio of its output powers, see, e.g., [23]. However, these 
noise estimates will still be suboptimal if the BM could not be 
updated while the target source changed its position relative to 
the microphones on the user’s head or the acoustic environ-
ment changed. 

More recently, a constrained BSS scheme has been proposed 
to identify the filters of two-channel blocking matrices [40], 
which does not need source activity information and continu-
ously delivers up-to-date estimates for noise and interference. 
For this, the cost function in (23) is complemented by a quad-
ratic constraint for one output (here )yp  steering a null toward 
the target source: 

 ( )W w dJ p
H

2
2

C = , (25)

where w p  denotes the vector of demixing filters in W  which pro-
duce the output ,yp  and d  denotes the steering vector corre-
sponding to the DOA of the direct path of the target source. This 
yields the constrained ICA cost function 

 ( ) ( ) ( ),W W WJ JJC ICA ICA Ch= +-  (26)

whose minimization suppresses the target in one output channel 
and thereby provides a reference for all other sources and noise of 
unknown coherence. The weight is typically chosen as 

. .0 5 0 8f.h  with larger values required if interfering sources 
are close to the target source. It should be noted that, although 
the constraint captures only the direct path, constrained ICA will 
intrinsically also aim at suppressing all correlated components, 
i.e., reflections of the target source, in the same output, thereby 
providing an advantage over a delay-and-subtract beamformer as 
shown in Figure 6. As the most attractive advantage, however, the 
fundamental concept of ICA assures a continuous update of the 
noise estimate without the need of estimating the activity of the 
involved sources. Recently, it was also shown that this concept can 
be generalized to identify all RTFs required for the BM of a GSC 
with an arbitrary number of constraints [43]. 

preSentatIon oF the enhanceD SIgnaLS
After extracting the target source using data-independent beam-
forming or statistically optimum filtering (cf. the sections 
“Data-Independent Beamforming” and “Statistically Optimum 
Signal Extraction”), the enhanced signal needs to be presented 
to the listener. While microphone placement is important to 
maintain a close relationship to the individual HRTFs, we also 
need to distinguish between a monaural system, i.e., a single 
device on one ear, and a binaural system, i.e., a system jointly 
processing signals, at both ears. While for a monaural system it 
seems obvious to just feed the enhanced signal to the loud-
speaker of this device, for a binaural system different output 
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[FIg7] the general binaural processing scheme.
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signals yL  and yR  can be generated and presented to the left 
and the right ear (cf. Figure 7). 

In a bilateral system, i.e., a set of two independently operating 
monaural systems, each device uses its own microphone signals 
and optimizes its filter coefficients independently, which may 
lead to a distortion of the binaural cues and hence the localiza-
tion ability [44]. To achieve true binaural processing, both 
devices need to cooperate with each other and exchange informa-
tion or signals, e.g., through a wireless link. Currently, the first 
commercial systems reach the market which exchange micro-
phone signals in full-duplex mode. These systems pave the way to 
future implementations of fully 
fledged binaural multimicrophone 
signal extraction algorithms, where 
microphone signals from both 
devices are processed and combined 
in each device. The gain in noise 
reduction performance of a binaural 
over a monaural system is exempla-
rily shown for an MVDR beamformer 
in Figure 8. 

The objective of a binaural speech enhancement algorithm is 
not only to selectively extract the target source and to suppress 
interfering sources and background noise, but also to preserve 
the auditory perception of the complete acoustic scene. This can 
be achieved by preserving the binaural cues, i.e., ITD, ILD, and IC, 
of the target source and the residual interfering sources and back-
ground noise. In addition to monaural cues, these binaural cues 
play a major role in spatial awareness and localization and are 
very important for speech intelligibility due to binaural unmask-
ing, e.g., [5]. 

All discussed signal enhancement algorithms in the sections 
“Data-Independent Beamforming” and “Statistically Optimum 

Signal Extraction” essentially generate a single-channel output 
signal. Since in a binaural system two output signals (i.e., one for 
each ear) are required, this single-channel output signal can 
either be binauralized, e.g., using binaural spectral postfiltering 
techniques [19], [45], [46] or by mixing the output signal with 
scaled (noisy) microphone signals [47], [48], or two different 
complex-valued spatial filters can be optimized, where the desired 
binaural cues are directly incorporated into the spatial filter 
design, e.g., [48]–[50]. Although the latter paradigm allows for 
more degrees of freedom to achieve noise reduction, there is typi-
cally a tradeoff between noise reduction performance and binau-

ral cue preservation. 
In binaural spectral postfiltering 

techniques, the same real-valued 
gain is applied to one microphone 
signal of each device, where a gain 
close to one is applied when the 
STFT bin should be retained (target 
source), and a gain close to zero is 
applied when the STFT bin should 
be suppressed (interfering source or 

background noise). This spectral gain can, e.g., be computed by 
comparing the estimated binaural cues with the expected cues of 
the target source or based on the temporal fluctuations of the 
ITD [45]. Other commonly used approaches compute the spectral 
gain based on the output signal of a data-independent or statisti-
cally optimum spatial filter (e.g., MVDR beamformer, BSS) [19], 
[46]. Although binaural spectral postfiltering techniques preserve 
the binaural cues of all sound sources, in essence, they can be 
viewed as single-channel noise reduction techniques, hence typi-
cally introducing speech distortion and exhibiting single-channel 
noise reduction artifacts (e.g., musical noise), especially at low 
input SNRs. 

The MVDR beamformer (using RTFs) and the MWF can be 
straightforwardly extended into a binaural version producing 
two output signals, by estimating the speech component in two 
reference microphone signals, i.e., one on each hearing aid [48]. 
In [48] and [44], it was shown both analytically and using sub-
jective listening experiments that the binaural MWF preserves 
the binaural cues of the target source but distorts the binaural 
cues of interferers and noise, such that all components are per-
ceived as coming from the direction of the target source. 
Clearly, this is undesired and, in some situations (e.g., traffic), 
even dangerous. To optimally benefit from binaural unmasking 
and to optimize the spatial awareness of the hearing aid user, 
several extensions for the binaural MWF and the MVDR beam-
former have been proposed, which aim at also preserving the 
binaural cues of the residual noise component by including cue 
preservation terms in the binaural cost function, e.g., [48]–[50]. 
These include either RTF preservation or interference rejection 
constraints for directional interfering sources [48], [49], or IC 
preservation constraints for diffuse noise [50]. Another 
approach is partial noise estimation, which corresponds to mix-
ing the binaural outputs with scaled versions of the noisy refer-
ence microphone signals [48]. 

[FIg8] the Snr gain of a monaural and a binaural MvDr 
beamformer (diffuse noise field).
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APPLICAtION IN ALDs
In [30] and [44], the performance of the binaural MWF and some 
of its extensions has been perceptually evaluated, both in terms of 
speech intelligibility and localization performance. First, it was 
shown that the binaural MWF achieved significant speech intelligi-
bility improvements compared to the bilateral MWF and the bilat-
eral ADM. This demonstrates that transmitting and processing 
microphone signals from both devices can result in a significant 
gain in noise reduction, especially when multiple interfering 
sources are present. Second, using a localization experiment in the 
frontal horizontal hemisphere, it was shown that using the bin-
aural MWF with partial noise estima-
tion it is possible to preserve spatial 
awareness without significantly 
affecting speech intelligibility. 

SuMMary anD outLook
In this article, we have presented an 
overview of several multimicro-
phone signal enhancement algo-
rithms for ALDs and have addressed 
other important issues, such as microphone placement and bin-
aural signal presentation. Using appropriate processing with 
multiple microphones in a binaural ALD allows both speech 
intelligibility improvement as well as a preservation of the audi-
tory perception of the acoustic scene. 

Future work in this area will focus both on algorithmic 
aspects and a better integration of psychoacoustics. On the algo-
rithmic side, more accurate and robust estimation and careful 
exploitation of comprehensive spatiotemporal signal statistics 
for all relevant sources in highly time-varying scenarios will be 
necessary to allow for the ultimate desired binaural presenta-
tion. The learning of acoustic scenarios and source characteris-
tics can certainly be expected to contribute to reaching this 
goal. Optimum distribution of the computational load over the 
available computing hardware via bit rate-constrained “body 
area networks” will constitute another challenge to algorithm 
developers. On the psychoacoustic side, ideally, meaningful cri-
teria are desirable that can directly be integrated into the cost 
functions to allow perceptually optimum signal processing at 
any given time instant. This may start from incorporating gen-
eral knowledge about well-known noise masking effects com-
bined with knowledge on the relative importance of certain 
binaural cues as used already in audio coding and reach to more 
powerful, yet unknown models for human hearing. For each 
individual, it should be merged with knowledge about possible 
hearing impairments or personal listening preferences, i.e., a 
so-called auditory consumer profile. One may speculate that 
with suitable user interfaces, the traditional fitting procedures 
will be replaced by training procedures supervised by the user 
and even the cost functions for optimizing the multichannel fil-
tering will be as individual as the users themselves. All of these 
developments will certainly benefit from the integration into 
handy, but powerful personal computing platforms that are 
already emerging. 
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