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ABSTRACT
In this paper, we present noise reduction for a hose-shaped
rescue robot. The robot is used for searching for disaster vic-
tims by capturing their voice with its microphone array. How-
ever, the ego noise generated by its vibration motors makes it
difficult to distinguish human voices. To solve this problem,
we propose a noise reduction method using a blind source
separation technique based on independent vector analysis
(IVA) and noise cancellation. Our method consists of two
steps: (1) estimating a speech signal and an ego noise sig-
nal from observed multichannel signals using the IVA-based
blind source separation technique, and (2) applying noise can-
cellation to the estimated speech signal using the estimated
ego noise signal as a noise reference. The experimental eval-
uations show that this approach is effective for suppressing
the ego noise.

Index Terms— Rescue robot, Tough environment, Noise
reduction, Independent vector analysis, Noise cancellation

1. INTRODUCTION

In recent years, the development of remotely operable robots
for the efficient investigation of postdisaster situations in
the event of natural disasters such as earthquakes has been
promoted. The Impulsing Paradigm Change through Dis-
ruptive Technologies Program (ImPACT) “Tough Robotics
Challenge”[1] is one such project. A hose-shaped rescue
robot [2] is one of the robots developed under this project.
The hose-shaped rescue robot is long and slim like a snake
and makes it possible to investigate narrow spaces that con-
ventional remotely operable robots cannot enter. A goal of the
hose-shaped rescue robot is to search for disaster victims by
capturing their voices with its microphones attached around
itself at regular intervals. However, the hose-shaped rescue
robot moves by vibrating cilia wrapped around itself using
vibration motors, so the noise generated by itself is mixed
with victims’ voices that are captured by its microphones.

This makes it difficult to distinguish human voices. In this
paper, we refer to such noise as “ego noise”.

Thus, in this study, we focus on reducing the ego noise
from the recorded sound in order to search for victims by
capturing their voices with the microphone array of the robot.
Recently, many noise reduction methods for robots have been
proposed, such as those described in [3, 4]. These methods
improves the performance of noise reduction by adapting the
microphone array geometry. However, microphone positions
on the hose-shaped rescue robot changes as the robot moves,
so we need a blind source separation (BSS) method, which
does not need information about microphone and source po-
sitions. Hence, in this study, we apply a BSS method based
on the statistical independence of each sound source, namely,
the independent vector analysis (IVA) [5], because IVA has
a remarkable advantage that it is not affected by permutation
ambiguity. Furthermore, we apply the time-variant noise can-
cellation to compensate for the time-invariant assumption of
IVA. We also evaluate the proposed method by an experiment
in which we reproduce the sound captured by the hose-shaped
rescue robot.

2. HOSE-SHAPED RESCUE ROBOT

2.1. Overview of hose-shaped rescue robot

Figure 1 shows an overview of the hose-shaped rescue robot.
The hose-shaped rescue robot basically consists of a hose,
cilia wrapped around the hose, and vibration motors that vi-
brate the hose, and performs various sensing functions using
sensors such as microphones, cameras, and gas sensors.

Figure 2 shows the movement principle of the hose-
shaped rescue robot. It schematically shows the contact area
between the robot and the floor. When the motors vibrate,
state (1) changes to state (2) by friction between the cilia
and the floor, then state (2) changes to state (3) by cilia slip-
ping. The hose-shaped rescue robot moves by repeating such
changes in states.
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Fig. 1: Hose-shaped rescue robot

Fig. 2: Movement principle of the hose-shaped rescue robot [2]

2.2. Problems in recording speech

In recording speech, the hose-shaped rescue robot, as well as
other robots, has problems caused by its movement principle,
as indicated in sect. 2.1 . The problems are as follows:

• Driving sound of the vibration motors,

• Fricative sound of cilia and floor, and

• Noise of microphone vibration.

In this paper, we refer to these noises as ego noise and pro-
pose the ego noise reduction method using IVA-based BSS
and noise cancellation.

3. PROPOSED METHOD

The hose-shaped rescue robot has more than one microphone.
Thus, we use a conventional multichannel BSS method, such
as beam forming [6] and a method based on statistical inde-
pendence. The hose-shaped rescue robot changes its shape
while moving. Thus, it is difficult to reduce ego noise by tech-
niques that assume the use of a position-fixed microphone
array such as beam forming [6]. Thus, we use a method
based on statistical independence, namely, the IVA-based
BSS method.

However, the demixing filter of the IVA-based BSS
method is time invariant for several seconds. Therefore,
in this study, we apply the time-variant noise canceller for the
postprocessing in IVA to reduce ego noise, which cannot be
cancelled using a time-invariant filter. A noise canceller usu-
ally requires a reference microphone for observing only noise

signals. However, in this study, we use IVA for estimating
noise in place of the reference microphone.

In what follows, we first explain the IVA-based BSS and
noise canceller, then explain the proposed method.

3.1. IVA-based Blind Source Separation

We use the IVA-based BSS method based on an auxiliary
function technique [5]. We suppose that K sources are ob-
served using K microphones. Let the short-time Fourier
transform (STFT) representation of source signals and ob-
served signals be sk(τ, ω) and xk(τ, ω), respectively. k is the
index of sources and microphones, ω is the index of frequency
bins, and τ is the index of the time frames.

Then, the mixing model is expressed as

x(τ, ω) = A(ω)s(τ, ω), (1)

and the estimated source signals are expressed as

y(τ, ω) = W(ω)x(τ, ω), (2)

where
A(ω) = (a1(ω),a2(ω), · · · ,aK(ω))h (3)

is the mixing matrix，

W(ω) = (w1(ω),w2(ω), · · · ,wK(ω))h (4)

is the demixing matrix, where h denotes the hermitian trans-
pose, and s(τ, ω),x(τ, ω), and y(τ, ω) are respectively de-
fined as

s(τ, ω) = (s1(τ, ω), · · · , sK(τ, ω))t, (5)
x(τ, ω) = (x1(τ, ω), · · · , xK(τ, ω))t, (6)
y(τ, ω) = (y1(τ, ω), · · · , yK(τ, ω))t, (7)

where t denotes transposition.
On the basis of the above model, the IVA-based BSS

is performed by finding the demixing matrix W(ω), which
maximizes the independence of yk(τ). Non-gaussianity,
mutual information, and likelihood are used as measures of
independence, and each case boils down to the minimization
problem of the objective function as follows [7]:

J(Ws) =

Nτ∑
τ=1

1

Nτ

K∑
k=1

G(yk(τ))−
Nω∑
ω=1

log |detW(ω)|, (8)

where Ws denotes a W(ω) set, Nω is the number of fre-
quency bins, Nτ is the number of time frames, yk(τ)is the
source-wise vector defined as

yk(τ) = (yk(1, τ), · · · , yk(Nω, τ))
t, (9)

and G(yk) is the contrast function. When p(yk) is the
probability density function that yk(τ) follows, we ob-
tain G(yk(τ)) = − log p(yk(τ)). In this paper, we as-
sume the prior distribution of source signals as a multi-
variate super-Gaussian distribution [8]. Thus, we obtain
G(yk(τ)) = ||yk(τ)||2.



Fig. 3: Noise canceller

By the auxiliary function technique, we use the algorithm
to obtain W, which minimizes Eq.(8), as follows[5]:

• Update of auxiliary variable

rk(τ) =

√√√√ Nω∑
ω=1

|wh
k(ω)x(τ, ω)|2, (10)

Vk(ω) =
1

Nτ

Nτ∑
τ=1

[
G′(rk(τ))

rk(τ)
x(τ, ω)xh(τ, ω)

]
, (11)

• Update of demixing matrix

wk(ω)← (W (ω)Vk(ω))
−1ek, (12)

wk(ω)← wk(ω)/
√
wh

k(ω)Vk(ω)wk(ω). (13)

Here, ek denotes the unit vector with the kth element unity.

3.2. Noise canceller

In addition to a microphone for recording speech, the noise
canceller requires a reference microphone located near a noise
source in order to record only a noise signal, as shown in
Fig. 3. We assume the situation wherein we can record the
noise reference signal at the same time as the speech signal.

Suppose that a speaker talks in a noisy environment, the
input signal to the microphone for recording speech, x(t), is
the mixed signal of speech, s(t), and the noise nr(t), and is
as follows:

x(t) = s(t) + nr(t), (14)

where t is the index of time samples.
On the other hand, the noise signal is recorded by the ref-

erence microphone at the same time as the speech is recorded.
Now, we can assume that the noise signal nr(t) mixed into the
microphone for recording speech correlates closely with the
reference microphone input signal r(t). Thus, we assume that
the relationship between the reference microphone input r(t)
and the noise signal mixed into the microphone for record-
ing speech can be described by a linear convolution model as
follows:

nr(t) ≈ h(t)tr(t), (15)

Fig. 4: Flow of the proposed method

where r(t) = [r(t), r(t− 1), · · · , r(t−N)]t is the reference
microphone input from the current time t to past N samples,
and ĥ(t) = [ĥ(0), ĥ(1), · · · , ĥ(N)]t is the estimated impulse
response.

On the basis of the above model, if the filter ĥ(t) is es-
timated for the noise signal nr(t) which mixed into the mi-
crophone for recording speech, the noise can be cancelled by
subtracting the estimated noise ĥ(t)tr(t) from the speech mi-
crophone input as follows:

y(t) = x(t)− ĥ(t)tr(t), (16)

where y(t) denotes the estimated speech signal.
As described above, we refer to the noise cancellation

method carried out by estimating the noise from the reference
signal highly correlated with the noise as the noise canceller.
The filter h(t) can be estimated on the basis of the minimiza-
tion of the mean square error.

The algorithms for estimating the filter are numerous,
and in this study, we use the normalized least mean square
(NLMS) algorithm [9]. From the NLMS algorithm, the up-
date rule of the filter ĥ(t) is

ĥ(t+ 1) = ĥ(t) + µ
y(t)

||r(t)||2
r(t). (17)

3.3. Flow of the proposed method

Figure 4 shows the flow of the proposed method, where s, n,
nr, and r denote the speech signal, the ego noise signal, the
residual noise signal in the IVA-based BSS, and the reference
signal of ego noise, respectively.

In the first step, the observed signals are separated into
independent signals, the number of which is the same as the
number of microphones. In this step, we use the IVA-based
frequency-domain BSS method based on the auxiliary func-
tion technique [5]. The IVA-based BSS is based on indepen-
dence, which is high-order statistics, so analyzing the statis-
tics requires several-second signals and in this method, it is



Table 1: Experimental conditions

Sampling frequency 16 kHz
IVA iteration 100

Frame length of STFT 1024 samples
Shift length of STFT 256 samples

Filter length of noise canceller 1600 taps
Step size of NLMS 0.1

Input SNR −10,−5, 0 dB

assumed that the demixing filter is time invariant. As a re-
sult, the ego noise, which does not follow the time-invariant
assumption, remains.

In the second step, we choose the signal that contains
speech from the separated signals, and apply the noise can-
celler using the sum of the other separated signals as the ego
noise reference signal. Note that we manually choose the
speech signal from the output signals. In this step, we expect
that the noise canceller cancels the residual noise that does
not follow the time-invariant assumption of IVA, because it
can update the filter at each time sample.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

To adjust the signal-to-noise ratio (SNR) of the input signal,
we use the artificially mixed signals of ego noise and speech.
As the ego noise signal, we use the sound recorded by moving
the hose-shaped rescue robot that has 8 microphones and 7 vi-
bration motors. As the speech signal, we use the convolved
signal of a dry speech signal and impulse responses between
the location of the speaker and those of the microphones.
We use the source-to-distortion ratio (SDR) and source-to-
interference ratio (SIR) [10] as the evaluation measure. SDR
is a measure for evaluating the distortion of the output signal.
SIR is a measure for evaluating the suppression of nontarget
signals. SDR and SIR are calculated on the basis of the cor-
rect source signal and the estimated source signal. If the target
sound is further enhanced, SDR and SIR increase. Other ex-
perimental conditions are shown in Table 1. Note that we here
apply the back-projection to the channel that includes many
speech components.

4.2. Results of evaluation experiment

Figure 5 shows the SDR and SIR improvements obtained at
different input SNRs. (b) shows that under all the conditions,
SDR improvement of the proposed method is the best. Com-
parison of the SDR improvement between SNR= 0 and other
SNRs shows that the difference between IVA and the pro-
posed method is small when SNR= 0. This indicates that the
speech components in the reference signal distort the desired
speech owing to the postprocessing with noise cancellation.
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Fig. 5: (a) SIR and (b) SDR improvements for recording at SNRs=
−10,−5, and 0 dB

However, (a) shows that SIR improvements under all con-
ditions are approximately the same; therefore, the proposed
method is effective for detecting the speech of disaster vic-
tims.

5. CONCLUSIONS

In this paper, in order to enhance speech on a recorded signal
using a hose-shaped rescue robot, we proposed the noise sup-
pression method based on IVA and noise cancellation, and
evaluated the proposed method by an experimental simula-
tion. As a result, using SDR, we obtained a 7 dB improve-
ment when using IVA, and a 1-4 dB improvement when using
postprocessing with the noise canceller.
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