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ABSTRACT
This paper introduces blind source separation (BSS) of convolutive mixtures of acoustic signals,

especially speech. The statistical and computational technique, called independent component
analysis (ICA), is examined. By achieving nonlinear decorrelation, time-delayed decorrelation, or
nonstationary decorrelation, we can find source signals only from observed mixed signals. Particular
attention is paid to the physical interpretation of BSS from the acoustical signal processing point of
view. Frequency-domain BSS is shown to be equivalent to two sets of frequency domain adaptive
microphone arrays, i.e., adaptive beamformers (ABFs). Although BSS can reduce reverberant
sounds to some extent like ABF, they mainly remove the sounds from the jammer direction. This
is the reason for the difficulty of BSS in the real world with long reverberation. If sources are
not “independent,” the dependence results in bias noise when getting the correct unmixing filter
coefficients. Therefore, the performance of BSS is limited by that of ABF. Although BSS is upper
bounded by ABF, BSS has a strong advantage over ABF. BSS can be regarded as an intelligent
version of ABF in the sense that it can adapt without any information on the source positions or
period of source existence/absence.

1. INTRODUCTION
Speech recognition is a fundamental technology for communication with computers, but with

existing computers, the recognition rate drops rapidly when more than one person is speaking or
when there is background noise. On the other hand, humans can understand their conversation at
a noisy cocktail party. This is the well known cocktail-party effect, where the individual speech
waveforms are found from their mixtures. The aim of source separation is to give this cocktail
party ability to computers. Then it will be possible to make computers understand what a person
is saying at a noisy cocktail party.
Blind source separation (BSS) is an emerging technique, which enables extraction of target

speech from observed mixed speech without the need for source positioning, spectral construction,
or a mixing system. To achieve this, we focus on a method based on independent component
analysis (ICA). ICA extracts independent sounds from among mixed sounds. There are a few
applications of BSS to mixed speech signals in the real world [1], but the separation performance
is still not good enough [2, 3].
Because ICA is a purely statistical process, the separation mechanism has not been clearly

understood in the sense of acoustic signal processing, and it has been difficult to know which
components were separated, and to what degree. We have investigated the ICA method in detail,
gradually uncovering its mechanisms by using theoretical analysis from the perspective of acoustic
signal processing [4] as well as experimental analysis based on impulse response [5]. The mechanism
of BSS based on ICA has been shown to be equivalent to that of an adaptive microphone array
system, i.e., two sets of adaptive beamformers (ABFs) with an adaptive null directivity aimed in
the direction of unnecessary sounds.
From the equivalence between BSS and ABF, we can make it clear that the physical behavior

of BSS reduces the jammer signal by making a spatial null towards the jammer. We also found
that BSS can be regarded as an intelligent version of ABF in the sense that it can adapt without
any information on the source positions or period of source existence/absence.
BSS is applicable to the achievement of noise robust speech recognition and high-quality hands-

free telecommunication.

2. What’s BSS?
Blind source separation (BSS) is an approach to estimate source signals si(t) using only the

information of mixed signals xj(t) observed at each input channel. Typical examples of source
signals are mixtures of simultaneous speech signals that have been picked up by several microphones,
brain waves recorded by multiple sensors, interfering radio signals arriving at a mobile phone, etc.

The Model of Mixed Signals
In the case of audio source separation, several sensor microphones are put in different positions

so that each records a mixture of the original source signals with a slightly different time and level.
In the real world where the source signals are speech and the mixing system is a room, the signals
are affected by reverberation and observed by microphones. Therefore, the N signals recorded by



Figure 1: BSS system configuration.
M microphones are modeled as

xj(n) =
N∑

i=1

P∑
p=1

hji(p)si(n − p+ 1) (j = 1, · · · , M), (1)

where si is the source signal from a source i, xj is the received signal by a microphone j, and hji

is the P -taps impulse response from source i to microphone j.

The Model of Unmixed Signals
In order to obtain unmixed signals, we estimate unmixing filters wij(k) of Q-taps, and the

unmixed signals are obtained as:

yi(n) =
M∑

j=1

Q∑
q=1

wij(q)xj(n − q + 1) (i = 1, · · · , N). (2)

The unmixing filters are estimated so that the unmixed signals become mutually independent. In
this paper, we consider a two-input, two-output convolutive BSS problem, i.e., N = M = 2 (Fig.
1).

Task of Blind Source Separation
We assume that the source signals s1 and s2 are mutually independent. This assumption is

usually true for sounds in the real world. There are two microphones which pick up the mixed
speech. We only have the observed signals x1 and x2 which are dependent. Our goal is to adapt
the unmixing system wij , and extract y1 and y2 so that they are mutually independent. With this
operation, we can get s1 and s2 in the output y1 and y2. We do not need any information on the
source positions or period of source existence/absence. Nor do we need any information on the
mixing system hji. Thus, this task is called blind source separation.
Note that an unmixing system wij can at best be obtained up to a scaling and a permutation.

Note also that BSS algorithm cannot solve the dereverberation/deconvolution problem in itself [6].

3. What’s ICA?
Independent component analysis (ICA) is a statistical method and was originally introduced

in the context of neural network modeling [7]. Recently, this method has been used for blind
source separation (BSS) of sounds, fMRI and EEG signals of biomedical applications, wireless
communication signals, images, etc.
In the theory of ICA, we use very general statistical properties: information on statistical

independence. In a source separation problem, the source signals are the “independent components”
of the data set. The problem of BSS is summarized to find a linear representation in which the
components are mutually independent. ICA consists of estimating both the coefficient wij and
sources si, when we only have the observed signals xj .
The coefficient wij is determined so that the output contains as much information on the data

as possible. The value of any one of the components gives no information on the values of the other
components. If the unmixed signals are mutually independent, then they are equal to the source
signals.

4. HOW CAN WE SEPARATE SOUNDS?
With the ICA-based BSS framework, how can we separate speech?

The simplified answer is to diagonalize RY , where RY is a (2×2) matrix:

RY =
[ 〈Φ(Y1)Y1〉 〈Φ(Y1)Y2〉

〈Φ(Y2)Y1〉 〈Φ(Y2)Y2〉
]

. (3)



The function Φ(·) is the activation function. The operation 〈·〉 is the averaging operation to get sta-
tistical information. We want to minimize the off-diagonal components, while we want to constrain
the diagonal components to proper constants.
The components of the matrix RY correspond to the mutual information between Y1 and Y2.

At the convergence point, the off-diagonal components, which are the mutual information between
Y1 and Y2, become zero: 〈Φ(Y1)Y2〉 = 0 〈Φ(Y2)Y1〉 = 0. (4)

While the diagonal components, which relate to the average amplitude of Y1 and Y2, are constrained
to proper constants: 〈Φ(Y1)Y1〉 = c1 〈Φ(Y2)Y2〉 = c2. (5)

To achieve this convergence, we use the recursive algorithm

W i+1 = W i + η∆W i, (6)

∆W i =
[

c1 − 〈Φ(Y1)Y1〉 〈Φ(Y1)Y2〉
〈Φ(Y2)Y1〉 c2 − 〈Φ(Y2)Y2〉

]
. (7)

When RY is diagonalized, ∆W converges to zero.

Second Order Statistics Approach
If Φ(Y1) = Y1, we have simple decorrelation:

〈Φ(Y1)Y2〉 = 〈Y1Y2〉 = 0. (8)

This is not sufficient to achieve independence. However, if we have nonstationary sources, we have
this equation for multiple time blocks, thus we can solve the problem. This is the nonstationary
decorrelation approach [6].
Or, if we have colored sources, we have delayed correlation for multiple time delay:

〈Φ(Y1)Y2〉 = 〈Y1(t)Y2(t+ τi)〉 = 0, (9)

thus we can solve the problem. This is the time-delayed decorrelation (TDD) approach [8].
These are the approaches of second order statistics (SOS).

Higher Order Statistics Approach
On the other hand if, for example, Φ(Y1) = tanh(Y1), we have:

〈Φ(Y1)Y2〉 = 〈tanh(Y1)Y2〉 = 0. (10)

With Tailor expansion, tanh(·) can be expressed as

〈(Y1 − Y 3
1

3
+
2Y 5

1

15
− 17Y 7

1

315
...) Y2〉 = 0, (11)

then we have higher order or nonlinear decorrelation, thus we can solve the problem. This is the
approach of higher order statistics (HOS) [9].

5. SEPARATION MECHANISM OF BSS
We can understand the behavior of BSS as two sets of ABFs [10]. An adaptive beamformer can

create only one null towards the jammer signal in the case of two microphones. BSS and ABF form
an adaptive spatial null to the jammer direction, and extract the target.
We compared the separation performance of BSS with that of ABF. Figure 2 shows the direc-

tivity patterns obtained by BSS and ABF. In Fig. 2, (a) and (b) show directivity patterns by W
obtained by BSS, and (c) and (d) show directivity patterns by W obtained by ABF. When TR = 0,
a sharp spatial null is obtained by both BSS and ABF [see Figs. 2(a) and (c)]. When TR = 300 ms,
the directivity pattern becomes duller for both BSS and ABF [see Figs. 2(b) and (d)].

6. CONCLUSIONS
Blind source separation (BSS) of convolved mixtures of acoustic signals, especially speech, were

examined. We can extract source signals only from observed mixed signals, by achieving nonlinear
decorrelation, time-delayed decorrelation, or nonstationary decorrelation. The statistical technique
of independent component analysis (ICA) was studied from the acoustic signal processing point of
view.
We gave an interpretation of BSS from the physical point of view showing the equivalence

between frequency-domain BSS and two sets of microphone array systems, i.e., two sets of adap-
tive beamformers (ABFs). Convolutive BSS can be understood as multiple ABFs that generate
statistically independent output, or more simply, output with minimal crosstalk.
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Figure 2: Directivity patterns (a) obtained by BSS (TR=0 ms), (b) obtained by BSS (TR=300 ms),
(c) obtained by ABF (TR=0 ms), and (d) obtained by ABF (TR=300 ms).

Because ABF and BSS mainly deal with sound from the jammer direction by making a null
towards the jammer, the separation performance is fundamentally limited. This understanding
clearly explains the poor performance of BSS in the real world with long reverberation. If the
sources are not “independent,” their dependency results in bias noise to get the correct unmixing
filter coefficients. Therefore, the performance of BSS is upper bounded by that of ABF.
However, as opposed to ABF, no assumptions on array geometry or source location need to be

made in BSS. BSS can adapt without any information on the source positions or period of source
existence/absence. This is because instead of adopting power minimization criteria that adapt the
jammer signal out of the target signal, we adopt cross-power minimization criteria that decorrelate
the jammer signal from the target signal. We showed that the least squares criterion of ABF is
equivalent to the decorrelation criterion of the output in BSS. The error minimization was shown
to be completely equivalent with a zero search in the crosscorrelation.
Although BSS is upper bounded by ABF, BSS has a strong advantage over ABF. Strict one-

channel power criteria have a serious crosstalk or leakage problem in ABF, whereas sources can be
simultaneously active in BSS. Also, ABF needs to know the array manifold and the target direction.
Thus, BSS can be regarded as an intelligent version of ABF.
The fusion of acoustic signal processing technologies and speech recognition technologies is play-

ing a major role in the development of user-friendly communication with computers, conversation
robots, and other advanced audio media processing technologies.
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