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ABSTRACT

This paper describes a real-time blind source separation
(BSS) method for moving speech signals in a room. Our
method employs frequency domain independent component
analysis (ICA) using a blockwise batch algorithm in the
first stage, and the separated signals are refined by post-
processing using crosstalk component estimation and non-
stationary spectral subtraction in the second stage. The
blockwise batch algorithm achieves better performance than
an online algorithm when sources are fixed, and the postpro-
cessing compensates for performance degradation caused
by source movement. Experimental results using speech
signals recorded in a real room show that the proposed
method realizes robust real-time separation for moving
sources. Our method is implemented on a standard PC and
works in realtime.

1. INTRODUCTION

Blind source separation (BSS) is a technique for estimat-
ing original source signals using only observed mixtures.
The BSS of audio signals has a wide range of applica-
tions including noise robust speech recognition, hands-free
telecommunication systems and high-quality hearing aids.
In most realistic applications, the source signal location may
change, and the mixing system is time-varying. Although a
large number of studies have been undertaken on BSS based
on ICA [1, 2, 3], only few studies have been made on BSS
for moving source signals [4, 5, 6, 7]. Indeed an online algo-
rithm can track a time-varying system, however, in general,
its performance is worse than a batch algorithm when the
system becomes stationary. Although we are dealing with
moving sources, we do not want to degrade the performance
for fixed sources.

In this paper, we propose a robust real-time BSS method
that employs frequency domain ICA using a blockwise
batch algorithm in the first stage, and the postprocessing of
crosstalk component estimation and non-stationary spectral
subtraction in the second stage. When we adopt a block-

wise frequency domain ICA, we need to solve a permuta-
tion problem for every block, and this is a time consuming
process especially when the block length is short. We use an
algorithm based on analytical calculation of null directions
to solve the permutation problem quickly. Another problem
inherent to batch algorithms is an input-output delay. To
reduce the delay, we use a technique for computing output
signal without waiting for the calculation of the separating
system to be completed. These techniques are useful for
realizing low-delay real-time BSS.

The blockwise batch algorithm achieves better separa-
tion performance than an online algorithm for fixed source
signals, but the performance declines for moving sources.
As we pointed out in [8], the solution of ICA works like
an adaptive beamformer, which forms a spatial null towards
a jammer signal. This characteristic means that BSS using
ICA is fragile as regards a moving jammer signal but robust
with respect to a moving target signal. Utilizing this nature,
we can estimate residual crosstalk components even when
a jammer signal moves. To compensate for the degradation
when a jammer signal moves, we employ postprocessing in
the second stage.

Experimental results using speech signals recorded in
a room show the effectiveness of the method in realizing
robust real-time separation.

2. ICA BASED BSS OF CONVOLUTIVE MIXTURES

In this section, we briefly review the BSS algorithm that
uses frequency domain ICA and formulate a blockwise
batch algorithm including an online algorithm as a special
case. We also describe a fast algorithm for solving permuta-
tion problems, which is necessary for real-time processing.

2.1. Frequency domain ICA

When the source signals are������� � �� ���� � ), the signals
observed by microphone� are������� � �� ����	�, and the
separated signals are
������ � �� ���� � ), the BSS model



can be described by the following equations:
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where��� is the impulse response from source� to micro-
phone�,��� is the coefficient when we assume that a sep-
arating system is used as an FIR filter, and� denotes the
convolution operator.

A convolutive mixture in the time domain corresponds
to instantaneous mixtures in the frequency domain. There-
fore, we can apply an ordinary ICA algorithm in the fre-
quency domain to solve a BSS problem in a reverberant en-
vironment. Using a short-time discrete Fourier transform
(STDFT) for (1), the model is approximated as:
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where,� is the angular frequency, and
 represents the
frame index. The separating process can be formulated in
each frequency bin as:
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where���� 
� � ������ 
�� ���� �� ��� 
��� is the source
signal in frequency bin�, ���� 
� � ������ 
�� ����
�� ��� 
��� denotes the observed signals,� ��� 
� �
������ 
�� ���� �� ��� 
��� is the estimated source signal,
and� ��� represents the separating matrix.� ��� is de-
termined so that����� 
� and����� 
� become mutually in-
dependent.

To calculate the separating matrix� , we use an opti-
mization algorithm based on the minimization of the mu-
tual information of� . The optimal� is obtained by the
following iterative equation using the natural gradient ap-
proach [9] :

�
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where� is an index for the iteration,� is an identity matrix,
� is a step size parameter,��� denotes the averaging oper-
ator, and���� is a nonlinear function. Because the signals
have complex values in the frequency domain, we use a po-
lar coordinate based nonlinear function, which is effective
for fast convergence especially when the number of input
data samples is small [10]:
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where� is a gain parameter that controls the nonlinearity.
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Fig. 1. Input-output delay of (a) BSS using ordinary block-
wise batch algorithm, and (b) BSS without waiting for cal-
culation of�	.

2.2. Blockwise batch algorithm

In order to track the time-varying mixing system, we up-
date the separating matrix for each time block�	 � �� �
��� ���
 � � � ��
�, where�
 is the block size, and�
represents the block index�� 	 ��.

Koutras et al. have proposed a similar method in the
time domain [5]. When�
 equals the STDFT frame length,
this procedure can be considered an online algorithm in the
frequency domain.

We use the separating matrix of the previous block as
the initial iteration value for a new block,i.e.,� �	�

	����� �

�
����
	 ��� , where�� is the number of iterations for (5).

We use a set of two null beamformers as the initial matrix
�

�	�
� ��� for the first block.

The batch algorithm has an inherent delay, because the
calculation of� needs to wait for the arrival of a data
block. Moreover, the calculation itself also takes time
(Fig. 1(a)). However, when the calculation is completed
within �
 and we use�	�
 for separation of the signals
in �	, we can avoid the delay for waiting and calculation
(Fig. 1(b)). This technique can reduce the input-output de-
lay and is suitable for low-delay real-time applications. It
seems that this method fails when a source signal moves,
but it is actually robust for the moving target signal, which
is shown in Sec. 4.3.
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Fig. 2. Model of BSS system (� � 	 � �).

2.3. Scaling and permutation

Once we have completed the ICA for all frequencies, we
need to solve the permutation and scaling problems. Since
we are handling signals with complex values, the scaling
factors are also complex values. Thus the scaling can be
divided into phase scaling and amplitude scaling.

We use a directivity pattern based method to solve the
permutation and phase scaling problems. When we consider
a separating system as a microphone array, we can write di-
rectivity patterns for every frequency bin. The permutation
problem is solved so that the null directions are aligned. We
can estimate the directions of the source signals from the
aligned directivity patterns, and the phase scaling problem
is solved so that the phase response of the estimated source
direction becomes zero.

In the following sections, we consider a two-input, two-
output convolutive BSS problem,i.e., � = 	 = 2 (Fig. 2).
When	 � � and the distance between the microphones
is sufficiently small to avoid spatial aliasing, the null direc-
tions����� can be calculated analytically as:
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where���������
���� is an�-th row vector of� ���, � is
the distance between microphones and� is the velocity of
sound [11]. This method does not require the directivity
pattern to be scanned, thus we can solve the permutation
problem quickly.

The amplitude scaling problem is solved by using
a slightly modified version of the method described in
[12]. We calculate the inverse of the separating matrices
� �����, and decide the scaling factors so that the norms
of each column of� ����� become uniform.

3. POSTPROCESSING FOR REFINING
SEPARATED SIGNALS

In this section, we briefly summarize the procedure for es-
timating and subtracting the residual crosstalk component.
The algorithm is described in detail in [13]. Figure 3 shows
a block diagram of the algorithm.
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Fig. 3. Postprocessing for removing crosstalk component
�
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� from ��.

We consider that�� is a target signal and�
 is a jammer
signal. The separated signal�� consists of a straight compo-
nent� �
�

� derived from�� and a crosstalk component� ���
�

derived from�
. If � ���
� is removed from��, the separation

performance improves.
We introduce FIR filters	��� 
� � ��	��� 
�� ����

������� 
�� in each frequency bin, where� is the length

of the filter. We assume that the power of�
���
� ��� 
� can

be approximated as the output of the filter whose input is
�
��� 
�. This is formulated as follows:
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The filters are updated by the following selectively nor-
malized LMS algorithm.
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��� 
� is an estimation error. Here,
� is a step size parameter andÆ is a positive constant to
avoid numerical instability when
 is very small.

We estimate the power of the residual crosstalk compo-
nent using (8) and (9), and finally, we obtain an estimation
of the straight component as�� �
�

� by the following spectral
subtraction procedure:

��
�
�
� ��� 
� � (10)����
���

�
����� 
�


 � 
 ��

���
� ��� 
�

���


����� 
�


����� 
�


(if 
����� 
�

 � 
 ��
���
� ��� 
�

)

� (otherwise)



Loudspeakers
(height: 1.35 m)

3.55 m

4.45 m

1.15 m

70
30

-40
-70

A

B

C

D

4cm

Room height: 2.50 m

Target
signal

Jammer
signal

Microphones
(height: 1.39 m)

2.25 m
1.75 m

Fig. 4. Layout of room used in experiments.

4. EXPERIMENTS

4.1. Experimental conditions

To examine the effectiveness of the proposed method, we
carried out experiments using speech signals recorded in
a room. The reverberation time of the room was 130 ms.
We used two omni-directional microphones with an inter-
element spacing of 4 cm. The layout of the room is shown
in Fig 4. The target source signal was first located at A, and
then moved to B at a speed of 30 deg/s. The jammer signal
was located at C and moved to D at a speed of 40 deg/s.

The step size parameter� in (5) affects the separation
performance of BSS when the block size changes. We chose
� to optimize the performance for each block size. Other
conditions are summarized in Table 1.

We assumed the straight component

�
�
� as a signal, and

the difference between the output signal and the straight
component as interference. We defined the output signal-
to-interference ratio (SIR�) in the time domain as follows:

SIR� � �� ���
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Similarly, the input SIR (SIR� ) is defined as,
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We use SIR� SIR� � SIR� as a performance measure.
This measurement is consistent with the performance eval-
uation of BSS in which the crosstalk component is assumed
as interference. We measured SIRs with 30 combinations of
source signals using three male and three female speakers,
and averaged them.

4.2. Performance for fixed sources

Although we are dealing with moving sources, we do not
want the performance for fixed sources to deteriorate. First,

Table 1. Experimental conditions
Common Sampling rate = 8 kHz

Window = hanning
Reverberation time��=130 ms

ICA part Frame length���� = 1024 point (128 ms)
Frame shift = 256 point (32ms)
� = 100.0
Number of iterations�� = 100
Block size�� = 1 s

Post Frame length��� = 1024 point (128 ms)
processing Frame shift = 64 point (8 ms)
part � � ���� Æ � ����

Block size
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Fig. 5. Average and standard deviation of SIR for fixed
sources

we measured the BSS performance using ICA without post-
processing. Figure 5 shows the average and standard de-
viation of SIR for fixed sources (the target is at A and the
jammer at C in Fig. 4). This indicates that the blockwise
batch algorithm outperforms the online algorithm (in which
� is tuned to optimize the performance), when we use the
update equation (5). In addition, the deviation of the batch
algorithm is smaller than that of the online algorithm. This
is why we adopt the blockwise batch algorithm in the first
stage. We used�
 = 1.0 sec. in the following experiments.

4.3. Moving target and moving jammer

Before considering the result obtained with the postprocess-
ing method, we investigate the BSS performance for mov-
ing sources using the blockwise batch algorithm. Figure 6
shows the SIR for a moving target (solid line) and for a mov-
ing jammer (dotted line). We can see that the SIR is not
degraded even when the target moves. By contrast, jammer
movement causes a decline in the SIR.

This can be explained by the directivity pattern of the
separating system obtained by ICA. The solution of fre-
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quency domain BSS works in the same way as an adaptive
beamformer, which forms a spatial null towards a jammer
signal (Fig. 7). Because of this characteristic, BSS using
ICA is robust as regards a moving target signal but fragile
with respect to a moving jammer signal.

4.4. Performance of blockwise batch algorithm with
postprocessing

The most important factor when estimating the crosstalk
component� ���

� using (8) and (9) is�
, and�
 is estimated
robustly even when�
 moves, because�
 is a target sig-
nal for �
. Therefore, postprocessing works robustly even
when the jammer signal�
 moves.

Figure 8 shows the SIR of blockwise batch algorithm
with postprocessing when the jammer signal moves (solid
line). We can see that the SIR is improved by the postpro-
cessing, and the drop of the SIR when the jammer moves is
reduced. This result shows that our postprocessing method
can compensate the fragility of the blockwise batch algo-
rithm when a jammer signal moves. Although crosstalk
components still remaining in the postprocessed output sig-
nal sometimes make a musical noise, the power is much
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Fig. 8. Effect of postprocessing. Jammer signal moved from
C to D at 10 sec.
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Fig. 9. Performance of online algorithm with and without
postprocessing. Jammer signal moved from C to D at 10
sec.

smaller than ordinary spectral subtraction.

4.5. Performance of online algorithm

Figure 9 shows the SIR of online algorithm with and with-
out postprocessing. The online algorithm is more sta-
ble than blockwise algorithm, however the performance is
worse when the sources are stationary, as we described in
Sec. 4.2. The postprocessing is also effective for this case,
thus we may choose the algorithm in the first stage accord-
ing to requirements of the application.

5. CONCLUSION

We proposed a robust real-time BSS method for moving
source signals. The combination of the blockwise batch
and the postprocessing realizes a robust low-delay real-time
BSS. We can solve a permutation problem quickly by us-
ing analytical calculation of null directions, and this tech-
nique is useful for solving convolutive BSS problems in



realtime. Postprocessing using crosstalk component esti-
mation and non-stationary spectral subtraction improves the
separation performance and reduces the performance deteri-
oration when a jammer signal moves. Experimental results
using speech signals recorded in a room showed the effec-
tiveness of the proposed method.
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