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ABSTRACT wise frequency domain ICA, we need to solve a permuta-
tion problem for every block, and this is a time consuming

This paperh dgs%crlbes a real—tlmﬁ blind Isqurce separation, ,-ess especially when the block length is short. We use an
(BSS) method for moving speech signals in a room. OUr 44 rithm based on analytical calculation of null directions
metlhoq employs frequentgzly dI(()Vr\?alnll)ndeﬁenlder?t;orr_\porkl]entto solve the permutation problem quickly. Another problem
analysis (ICA) using a blockwise batch algorithm in the ,parant 1o hatch algorithms is an input-output delay. To
first stage, and the separated signals are refined by postiqqce the delay, we use a technique for computing output
processing using crosstalk qomponent estimation and non'signal without waiting for the calculation of the separating
stationary spectral subtraction in the second stage. Thesystem to be completed. These techniques are useful for
blockwise batch algorithm achieves better performance thanrealizing low-delay real-time BSS
an or_lline algorithm when sources are fixed, and thg postpro- The blockwise batch algorithm achieves better separa-
Eessmga compsnrsnatﬁts f(I)ErXpe;ifr?]rn:]?nlc:e delgt:]radaitr:on Causiﬂon performance than an online algorithm for fixed source
y source movement. perimental resulls using speec signals, but the performance declines for moving sources.
signals recorded in a real room show that the proposed

. ) : ~ " As we pointed out in [8], the solution of ICA works like
method realizes robust real-time separation for moving

sources. Our method is implemented on a standard PC ancgn adaptive beamformer, which forms a spatial null towards
works in. realtime P jammer signal. This characteristic means that BSS using

ICA is fragile as regards a moving jammer signal but robust

with respect to a moving target signal. Utilizing this nature,
1. INTRODUCTION we can estimate residual crosstalk components even when

a jammer signal moves. To compensate for the degradation

Blind source separation (BSS) is a technique for estimat- when a jammer signal moves, we employ postprocessing in

ing original source signals using only observed mixtures. the second stage.

The BSS of audio signals has a wide range of applica-  Experimental results using speech signals recorded in

tions including noise robust speech recognition, hands-freea room show the effectiveness of the method in realizing

telecommunication systems and high-quality hearing aids. robust real-time separation.

In most realistic applications, the source signal location may

change, and the mixing system is time-varying. Although a

large number of studies have been undertaken on BSS based: |CA BASED BSSOF CONVOLUTIVE MIXTURES

on ICA [1, 2, 3], only few studies have been made on BSS ] ) ] ] ]

for moving source signals [4, 5, 6, 7]. Indeed an online algo- In this section, we brlgfly review the BSS algorithm th.at

rithm can track a time-varying system, however, in general, Uses frequency domain ICA and formulate a blockwise

its performance is worse than a batch algorithm when the Patch algorithm including an online algorithm as a special

system becomes stationary. Although we are dealing with €aS€- We also describe a fast algorithm for solving permuta-

moving sources, we do not want to degrade the performancet'on problems, which is necessary for real-time processing.

for fixed sources.

In this paper, we propose a robust real-time BSS method 1. Frequency domain I CA

that employs frequency domain ICA using a blockwise

batch algorithm in the first stage, and the postprocessing ofWhen the source signals argt)(i = 1, ..., N), the signals

crosstalk component estimation and non-stationary spectralobserved by microphongarez ;(t)(j = 1, ..., M), and the

subtraction in the second stage. When we adopt a block-separated signals agg(t)(k = 1,..., N), the BSS model
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can be described by the following equations: block size 7}

(a) STDFT
N Bm Bm+1 Bm+2 > frame Iength
.Z’J (t) = Z(hﬂ ES Sz)(t) (1) I(t) M % N % L % L %

i=1 STDFT &

M X(w n) } PRI S T SR % MR % MR %
? Wm
yi(t) = D (wi *2;)(1) ) A YL W,

j:l y(t) L1 1 % L1 1 %

whereh j; is the impulse response from souric® micro-

. . - input-output delay
phonej, wy; is the coefficient when we assume that a sep-

arating system is used as an FIR filter, andenotes the (b)
convolution operator. B2 Bn By,

A convolutive mixture in the time domain corresponds z(t) | LI T a—
to instantaneous mixtures in the frequency domain. There- SIDFT.y
fore, we can apply an ordinary ICA algorithm in the fre- X(w,n) | oA W ‘ ‘
guency domain to solve a BSS problem in a reverberant en- ST|D,:T’+ Yo =W 2 X
vironment. Using a short-time discrete Fourier transform y(t) IS E—
(STDFT) for (1), the model is approximatedas: @™ >

input-output delay
X (w,n) = H(®)S(w,n), (3)

Fig. 1. Input-output delay of (a) BSS using ordinary block-
where, w is the angular frequency, and represents the  wise batch algorithm, and (b) BSS without waiting for cal-
frame index. The separating process can be formulated inculation of W ,,,.
each frequency bin as:

Y (w,n) = W(w)X(w,n), (4) 2.2. Blockwise batch algorithm
where S(w,n) = [Si(w,n), ..., Sn(w,n)]T is the source ) ] o
signal in frequency binv, X(w,n) = [X1(w,n), ..., In order to track_the tlmg—varylng mixing system, we up-
Xr(w,n)]T denotes the observed signal¥(w,n) = date the separating matrix for eqch time bIdE!g ={t:
[Y1(w,n), ..., Yn(w,n)]T is the estimated source signal, (™ —1)Tp <t < mT;}, whereT, is the block size, andh
and W (w) represents the separating matrb¥/ (w) is de-  'epresents the block index: > 1).
termined so that’; (w, n) andY;(w, n) become mutually in- Koutras et al. have proposed a similar method in the
dependent. time domain [5]. WherT, equals the STDFT frame length,

To calculate the separating mat#¥’, we use an opti-  this procedure can be considered an online algorithm in the
mization algorithm based on the minimization of the mu- frequency domain.
tual information ofY. The optimalW is obtained by the
following iterative equation using the natural gradient ap-
proach [9] :

We use the separating matrix of the previous block as
the initial iteration value for a new blocke,, nglrl (w) =

w WD (), whereN; is the number of iterations for (5).
with) — w4y — (@) Y)W, (5) We(olﬂse a set of two null beamformers as the initial matrix
W (w) for the first block.

wherei is an index for the iteratiorf is an identity matrix, The batch algorithm has an inherent delay, because the
p is a step size parametdr) denotes the averaging oper- calculation of W needs to wait for the arrival of a data
ator, and®(-) is a nonlinear function. Because the signals plock. Moreover, the calculation itself also takes time
have complex values in the frequency domain, we use a po-(Fig. 1(a)). However, when the calculation is completed
lar coordinate based nonlinear function, which is effective within 7, and we usé¥,,_, for separation of the signals

for fast convergence especially when the number of input in B,,, we can avoid the delay for waiting and calculation

data samples is small [10]: (Fig. 1(b)). This technique can reduce the input-output de-
lay and is suitable for low-delay real-time applications. It
®(Y) = tanh(g - abs(Y))eJ”g(Y), (6) seems that this method fails when a source signal moves,

but it is actually robust for the moving target signal, which
whereg is a gain parameter that controls the nonlinearity.  is shown in Sec. 4.3.
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Source Observed Separated Separated signals

signals signals signals obtained by ICA Spectral  Refined
S A X W Y, Yl('s)(w n) +Y1(“)(w n) subtractor  output
) 3 ~

Yi(w,n) N
Y (w,n)

Ya(w, n)
SQ X2 )/2

Mixing system  Separating system

update @ only when |Yi(w,n)| < |Ya(w, n)|

Fig. 2. Model of BSS system/{ = M = 2).
Fig. 3. Postprocessing for removing crosstalk component

(c)
2.3. Scaling and permutation Yy from ;.
Once we have completed the ICA for all frequencies, we _ _ _ o
need to solve the permutation and scaling problems. Since ~ We considertha$) is a target signal anfl, is a jammer
we are handling signals with complex values, the scaling signal. The separated sigrial consists of a straight compo-
factors are also complex values. Thus the scaling can benentYl(s) derived fromS; and a crosstalk componeﬁg(c)

divided into phase scaling and amplitude scaling. derived fromSs. If ¥,*) is removed front, the separation
We use a directivity pattern based method to solve the performance improves.
permutation and phase scaling problems. Whenwe consider \we introduce FIR filtersa(w,n) = [ao(w,n), ...,

a separating system as a microphone array, we can write di-,; _, (w,7)] in each frequency bin, wherg is the length
rectivity patterns for every frequency bin. The permutation of the filter. We assume that the powerquc) (w,n) can

problem is solved so that the null directions are aligned. We |, approximated as the output of the filter whose input is
can estimate the directions of the source signals from theYZ(w n). This is formulated as follows:

aligned directivity patterns, and the phase scaling problem

is solved so that the phase response of the estimated source L1
direction becomes zero. |)>1(c) (w,n)[* ~ Z ap(w,n)|[Ya(w,n — k) (8)
In the following sections, we consider a two-input, two- k=0

output convolutive BSS probleme., N = M = 2 (Fig. 2).

When M = 2 and the distance between the microphones  The filters are updated by the following selectively nor-
is sufficiently small to avoid spatial aliasing, the null direc- malized LMS algorithm.

tions#;(w) can be calculated analytically as:

@) Aa(w,n+1) = 9)
. Wi (W C
6;(w) = arcsin <arg <wzz(w)> T w) , (7 T T ||u7(7w,n)||2 e(w,n)u(w,n)
o : (if Y1 (w,n)| < [Yz2(w,n)])
where[w;; (w)w;2(w)] is ani-th row vector ofW (w), d is 0 (otherwise)
the distance between microphones anid the velocity of
sound [11]. This method does not require the directivity where u(w,n) = [Valw,n)]% [Valw,n — D2, ...,

pattern to be scanned, thus we can solve the permutatio
problem quickly.

The amplitude scaling problem is solved by using
a slightly modified version of the method described in
[12]. We calculate the inverse of the separating matrices
W (w)~!, and decide the scaling factors so that the norms
of each column oW (w)~! become uniform.

r]YQ(w,n — L + 1)?]T is an input vector and(w,n) =
Y1 (w,n)|? —a” (w,n)u(w,n) is an estimation error. Here,
n is a step size parameter ands a positive constant to
avoid numerical instability when is very small.

We estimate the power of the residual crosstalk compo-
nent using (8) and (9), and finally, we obtain an estimation
of the straight component aéfs) by the following spectral

subtraction procedure:
3. POSTPROCESSING FOR REFINING

SEPARATED SIGNALS ffl(s) (w,n) = (10)
In this section, we briefly summarize the procedure for es- (Vi (w,n)|? — 77 (w,n)|2)1/2M
timating and subtracting the residual crosstalk component. ) ) 5 (0) |Y12(w’ n)|
The algorithm is described in detail in [13]. Figure 3 shows (if [Y1(w,n)]* > Y17 (w,n)[%)
a block diagram of the algorithm. 0 (otherwise)
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4.45 m

Loudspeakers Table 1. Experimental conditions

g (et 1.35 M) Common | Sampling ra¢ = 8 kHz
o SN Target Window = hanning
Microphones o signal Reverberation tim&x=130 ms
355 m (he'ght:§1'39 m)-70 ‘ ICApart | Frame lengtii7ca = 1024 point (128 ms)
i Frame shift = 256 point (32ms)
g =100.0
52 Jammer Number of iterationsV; = 100
175m>D  signal Block sizeT, =1's
fo2:25 M3 Room height: 2.50 m Post Frame lengtil’ss = 1024 point (128 ms)
processing| Frame shift = 64 point (8 ms)
Fig. 4. Layout of room used in experiments. part n=0.1,5 = 0.01
4. EXPERIMENTS 17
4.1. Experimental conditions 16}
To examine the effectiveness of the proposed method, we 15¢
carried out experiments using speech signals recorded in & '4,|
a room. The reverberation time of the room was 130 ms. RS)
We used two omni-directional microphones with an inter- @ 13} Blockwise batch
element spacing of 4 cm. The layout of the room is shown » 121 ockwise batc
in Fig 4. The target source signal was first located at A, and
then moved to B at a speed of 30 deg/s. The jammer signal 11} Online
was located at C and moved to D at a speed of 40 deg/s. . X X
; ; ; 12802 0. 1
The step size parametgrin (5) affects the separation 012802 05 Block size 7} (s)

performance of BSS when the block size changes. We chose
1 to optimize the performance for each block size. Other
conditions are summarized in Table 1.

We assumed the straight compon;eﬁf as a signal, and
the difference between the output signal and the straight
component as interference. We defined the output signal-we measured the BSS performance using ICA without post-
to-interference ratio (SIR) in the time domain as follows:  processing. Figure 5 shows the average and standard de-

viation of SIR for fixed sources (the target is at A and the

S, ()2 jammer at C in Fig. 4). This indicates that the blockwise

_ (9 batch algorithm outperforms the online algorithm (in which

Zt ly1(t) —y; ()] . L
u is tuned to optimize the performance), when we use the
Similarly, the input SIR (SIR) is defined as, update equation (5). In addition, the deviation of the batch
algorithm is smaller than that of the online algorithm. This
is why we adopt the blockwise batch algorithm in the first
stage. We used, = 1.0 sec. in the following experiments.

Fig. 5. Average and standard deviation of SIR for fixed
sources

SIRp = 101log

- (dB).  (11)

_ S i (hit x51) (1))
SIR; = 101 @dB). (12)
L S S (ha ) ()

We_ use SIR= SIRQ — SIRI as a performance measure. 43 Moving target and moving jammer

This measurement is consistent with the performance eval-

uation of BSS in which the crosstalk component is assumedBefore considering the result obtained with the postprocess-
as interference. We measured SIRs with 30 combinations ofing method, we investigate the BSS performance for mov-
source signals using three male and three female speakerdpng sources using the blockwise batch algorithm. Figure 6
and averaged them. shows the SIR for a moving target (solid line) and for a mov-
ing jammer (dotted line). We can see that the SIR is not
degraded even when the target moves. By contrast, jammer
movement causes a decline in the SIR.

Although we are dealing with moving sources, we do not This can be explained by the directivity pattern of the
want the performance for fixed sources to deteriorate. First, separating system obtained by ICA. The solution of fre-

4.2. Performancefor fixed sources
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Fig. 6. SIR of blockwise batch algorithm without postpro- Fig. 8. Effect of postprocessing. Jammer signal moved from

cessing. Target and jammer signals moved at 10 sec. CtoDat 10 sec.
20 Online
with postprocessing
— 15¢
om
E —~
£ g
3 A=
U} @10t
(%2}
5¢ Online
without postprocessing
Move
% 2 4 6 8 10 12 14 16 18 20
Fig. 7. Directivity pattern of separating system obtained by Time (s)

frequency domain ICA _ _ ) ) )
Fig. 9. Performance of online algorithm with and without

postprocessing. Jammer signal moved from C to D at 10
guency domain BSS works in the same way as an adaptivesec.
beamformer, which forms a spatial null towards a jammer
signal (Fig. 7). Because of this characteristic, BSS using
ICA is robust as regards a moving target signal but fragile
with respect to a moving jammer signal.

smaller than ordinary spectral subtraction.

4.5. Performance of online algorithm

4.4. Performance of blockwise batch algorithm with

) Figure 9 shows the SIR of online algorithm with and with-
postprocessing

out postprocessing. The online algorithm is more sta-

The most important factor when estimating the crosstalk P€ than blockwise algorithm, however the performance is
componenﬁfl(c) using (8) and (9) &5, andY is estimated worse when the sources are s_tatlonary, as we desqubed in
robustly even wherS, moves, becauss. is a target sig- Sec. 4.2. The postprocessing is al§o effegtlve for this case,
nal for Y. Therefore, postprocessing works robustly even tNus We may choose the algorithm in the first stage accord-
when the jammer signal, moves. ing to requirements of the application.

Figure 8 shows the SIR of blockwise batch algorithm
with postprocessing when the jammer signal moves (solid 5. CONCLUSION
line). We can see that the SIR is improved by the postpro-
cessing, and the drop of the SIR when the jammer moves isWe proposed a robust real-time BSS method for moving
reduced. This result shows that our postprocessing methodsource signals. The combination of the blockwise batch
can compensate the fragility of the blockwise batch algo- and the postprocessing realizes a robust low-delay real-time
rithm when a jammer signal moves. Although crosstalk BSS. We can solve a permutation problem quickly by us-
components still remaining in the postprocessed output sig-ing analytical calculation of null directions, and this tech-
nal sometimes make a musical noise, the power is muchnique is useful for solving convolutive BSS problems in
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realtime. Postprocessing using crosstalk component esti{10] H. Sawada, R. Mukai, S. Araki, and S. Makino, “Po-
mation and non-stationary spectral subtraction improves the

separation performance and reduces the performance deteri-

oration when a jammer signal moves. Experimental results

using speech signals recorded in a room showed the eﬁec-[

tiveness of the proposed method.
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