
First Stereo Audio Source Separation Evaluation
Campaign: Data, Algorithms and Results

Emmanuel Vincent1, Hiroshi Sawada2, Pau Bofill3, Shoji Makino2,
and Justinian P. Rosca4

1 METISS Group, IRISA-INRIA
Campus de Beaulieu, 35042 Rennes Cedex, France

emmanuel.vincent@irisa.fr
2 Signal Processing Research Group, NTT Communication Science Labs

2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
3 Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya
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Abstract. This article provides an overview of the first stereo audio
source separation evaluation campaign, organized by the authors. Fif-
teen underdetermined stereo source separation algorithms have been ap-
plied to various audio data, including instantaneous, convolutive and real
mixtures of speech or music sources. The data and the algorithms are
presented and the estimated source signals are compared to reference
signals using several objective performance criteria.

1 Introduction

Large-scale evaluations facilitate progress in a field by revealing the effects of dif-
ferent choices in algorithm design, promoting common test data and evaluation
criteria and attracting the interest of funding bodies. Several evaluations of audio
source separation algorithms have been conducted recently, focusing on single-
channel speech mixtures1 or multichannel over-determined speech mixtures2,3,4.
This article provides an overview of the complementary evaluation campaign for
stereo underdetermined audio mixtures organized by the authors. Detailed re-
sults of the campaign are available at http://sassec.gforge.inria.fr/.

We define the source separation task and describe test data and evaluation
criteria in Section 2. Then we present the algorithms submitted by the partic-
ipants in Section 3 and summarize their results in Section 4. We conclude in
Section 5.

1 http://www.dcs.shef.ac.uk/~martin/SpeechSeparationChallenge.htm
2 http://bme.engr.ccny.cuny.edu/faculty/parra/bss/
3 http://homepages.inf.ed.ac.uk/mlincol1/SSC2/
4 http://mlsp2007.conwiz.dk/index.php?id=43
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2 Data and Evaluation Criteria

2.1 The Stereo Underdetermined Source Separation Task

Common audio signals, e.g. radio, television, music CDs and MP3s, are typically
available in stereo (two-channel) format and consist of a mixture of more than
two sound sources. Denoting by J > 2 the number of sources, each channel xi(t)
(1 ≤ i ≤ 2) of the mixture signal can be expressed as [1]

xi(t) =
J∑

j=1

simg
ij (t) (1)

where simg
ij (t) is the spatial image of source j (1 ≤ j ≤ J) on channel i, that is

the contribution of this source to the observed mixture in this channel.
Different types of mixtures can be distinguished. Instantaneous mixtures are

generated via (1) using a mixing desk or dedicated software by constraining the
spatial images of each source j to simg

ij (t) = aijsj(t), where sj(t) is a single-
channel source signal and aij are positive mixing gains. Synthetic convolutive
mixtures are obtained similarly via simg

ij (t) =
∑

τ aij(τ)sj(t − τ), where aij(τ)
are mixing filters. Live recordings are acquired by recording all the sources si-
multaneously in a room using a pair of microphones. These recordings may also
be obtained by recording the sources one at a time in the same room and adding
the resulting source images together within each channel [2].

We define the source separation task as that of estimating the spatial images
simg

ij (t) of all sources j on all channels i from the two channels xi(t) of a mixture.
This definition has two advantages: it is valid for all types of mixtures, even with
spatially extended sources that cannot be represented as single-channel signals,
and potential gain or filtering indeterminacies about the estimated single-channel
source signals sj(t) disappear when considering their spatial images instead [1].

2.2 Development and Test Data

The development and test data used for the evaluation campaign involved four
classes of signals: male speech, female speech, non-percussive music and music
including drums. Music mixtures involved three sources taken from synchronized
multitrack recordings, while speech mixtures involved four independent sources.
All the source signals were sampled at 16 kHz and had a duration of 10 s.

The development data consisted of one instantaneous mixture, two synthetic
convolutive mixtures and two live recordings per class. Instantaneous mixtures
were generated by scaling the source signals by positive gains. Live recordings
were acquired by playing the source signals through loudspeakers in a room at
NTT with RT60 = 250 ms reverberation time and recording them using two
pairs of omnidirectional microphones with spacings of 5 cm and 1 m. Figure 1
depicts the arrangement of loudspeakers and microphones. Synthetic convolutive
mixtures were obtained by filtering the sources with simulated room impulse
responses computed for the same arrangement using Roomsim5. Ground truth
5 http://media.paisley.ac.uk/˜campbell/Roomsim/
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data, i.e. the source signals, their spatial images and the mixing filters or gains,
were distributed with the mixture signals at http://sassec.gforge.inria.fr/.
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Fig. 1. Recording arrangement used for development data. Only three of the four
loudspeakers were used for music mixtures.

The same number of test data was obtained similarly to the development data,
using different source signals and positions for each mixture. The distances of the
sources from the center of the microphone pairs were drawn randomly between
80 cm and 1.2 m and their angles of arrival between −60◦ and +60◦ with a
minimal spacing of 15◦. The mixture signals were made available, but ground
truth data, including the exact source positions, was kept hidden6.

2.3 Objective Performance Criteria

The participants were asked to provide estimates ŝimg
ij (t) of the spatial images

of all sources j for some test mixtures. The quality of these estimates was then
evaluated by comparison with the true source images simg

ij (t) using four objec-
tive performance criteria, inspired from criteria previously designed for single-
channel source estimates [3]. By contrast with other existing measures [4,5], the
proposed criteria can be computed for all types of separation algorithms and do
not necessitate knowledge of the separating filters or masks.

The criteria derive from the decomposition of an estimated source image as

ŝimg
ij (t) = simg

ij (t) + espat
ij (t) + einterf

ij (t) + eartif
ij (t) (2)

where simg
ij (t) is the true source image and espat

ij (t), einterf
ij (t) and eartif

ij (t) are dis-
tinct error components representing spatial (or filtering) distortion, interference
and artifacts. This decomposition is motivated by the auditory distinction be-
tween sounds from the target source, sounds from other sources and “gurgling”
6 Only the first two authors of this article had potentially access to these data.
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noise, corresponding to the signals simg
ij (t) + espat

ij (t), einterf
ij (t) and eartif

ij (t) re-
spectively. The computational modeling of this auditory segregation process is
an open issue so far. For simplicity, we chose to express spatial distortion and
interference components as filtered versions of the true source images, computed
by least-squares projection of the estimated source image onto the corresponding
signal subspaces [3]

espat
ij (t) = PL

j (ŝimg
ij )(t) − simg

ij (t) (3)

einterf
ij (t) = PL

all(ŝ
img
ij )(t) − PL

j (ŝimg
ij )(t) (4)

eartif
ij (t) = ŝimg

ij (t) − PL
all(ŝ

img
ij )(t) (5)

where PL
j is the least-squares projector onto the subspace spanned by simg

kj (t−τ),
1 ≤ k ≤ I, 0 ≤ τ ≤ L−1, and PL

all is the least-squares projector onto the subspace
spanned by simg

kl (t − τ), 1 ≤ k ≤ I, 1 ≤ l ≤ J , 0 ≤ τ ≤ L − 1. The filter length
L was set to 512 (32 ms), which was the maximal tractable length.

The relative amounts of spatial distortion, interference and artifacts were then
measured using three energy ratio criteria expressed in decibels (dB): the source
Image to Spatial distortion Ratio (ISR), the Source to Interference Ratio (SIR)
and the Sources to Artifacts Ratio (SAR), defined by

ISRj = 10 log10

∑I
i=1

∑
t simg

ij (t)2
∑I

i=1
∑

t espat
ij (t)2

(6)

SIRj = 10 log10

∑I
i=1

∑
t(s

img
ij (t) + espat

ij (t))2
∑I

i=1
∑

t einterf
ij (t)2

(7)

SARj = 10 log10

∑I
i=1

∑
t(s

img
ij (t) + espat

ij (t) + einterf
ij (t))2

∑I
i=1

∑
t eartif

ij (t)2
. (8)

The total error was also measured by the Signal to Distortion Ratio (SDR)

SDRj = 10 log10

∑I
i=1

∑
t simg

ij (t)2
∑I

i=1
∑

t(e
spat
ij (t) + einterf

ij (t) + eartif
ij (t))2

(9)

We emphasize that this measure is arbitrary, in the sense that it weights the
three error components equally. In practice, each component should be given a
different weight depending on the application. For instance, spatial distortion is
of little importance for most applications, except for karaoke where it can result
in imperfect source cancellation, even in the absence of interference or artifacts.
Similarly, artifacts are crucial for hearing aid applications, for which “gurgling”
noise should be avoided at the cost of increased interference. These criteria were
implemented in Matlab and distributed at http://sassec.gforge.inria.fr/.

3 Algorithms

The campaign involved thirteen participants, who submitted the results of fif-
teen source separation algorithms. The underlying approaches are summarized in
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Table 1. Submitted source separation algorithms

N◦ Submitter
Name

Source localization Source signal estimation

Algorithms for instantaneous mixtures only
1 D. Barry

ADRess
Manual IID clustering from a
magnitude-weighted histogram
with auditory feedback [6]

Source magnitude estimation in
the STFT bins associated with
each IID cluster [6]

2 P. Bofill Peak picking on a smoothed IID
histogram [7] with STFT bins
selected as in [8]

Minimization of the l1 norm of
the real and imaginary parts of
the source STFTs [9]

3 A. Ehmann Manual peak picking on an IID
histogram

Binary STFT masking with dif-
ferent resolutions at high/low
frequencies

4 V. Gowreesunker Peak picking on a thresholded
IID histogram [10]

Binwise MDCT projection onto
the nearest IID subspace [10]

5 M. Kleffner Peak picking on a thresholded
IID histogram [11] with STFT
bins selected as in [12]

Online FFT-domain minimum-
variance beamforming [13]

6 N. Mitianoudis Soft IID clustering given the
number of sources [14]

Binwise MDCT projection onto
the nearest IID subspace [14]

7 H. Sawada Hard IID clustering given the
number of sources

Binary STFT masking

8 E. Vincent Manual peak picking on an IID
histogram weighted as in [12]

Minimization of the l0 norm of
the source STFTs [15]

9 M. Xiao
SABM+SSDP

Hard fixed-width IID clustering
on selected STFT bins [8]

Mixing inversion with 2 sources
per time frame estimated from
the mixture covariance [16]

10 M. Xiao
SABM+SNSDP

Hard fixed-width IID clustering
on selected STFT bins [8]

Extension of [16] with more ac-
tive sources in some time frames

Algorithms for instantaneous and/or convolutive mixtures
11 S. Araki Soft (IID,ITD) clustering given

the number of sources [17]
Maximum SNR beamforming
[18] and soft STFT masking [19]

12 Y. Izumi Soft clustering of the mixture
STFT bins based on (IID,IPD)
given the number of sources [20]

Soft STFT masking by cluster
probabilities [20]

13 T. Kim FFT-domain independent com-
ponent analysis [21] and soft
masking (two sources only)

14 R. Weiss & M.
Mandel

Soft (IID,IPD) clustering given
the number of sources [22]

Soft STFT masking by cluster
probabilities [22]

15 H. Sawada Frequency-wise (IID,IPD) clus-
tering given the number of sour-
ces as in [17] and sorting [23]

Binary STFT masking

Table 1. All algorithms except n◦13 could be broken into (possibly iterated) source
localization and source signal estimation steps. These two steps were conducted
in the time-frequency domain via a Short-Time Fourier Transform (STFT) or a
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Table 2. Results for instantaneous mixtures

Algorithm 1 2 3 4 57 6 7 8 9 10 14
SDR (dB) 4.0 4.2 6.8 3.5 -23.4 -16.0 7.2 10.3 5.8 2.7 -2.4
ISR (dB) 7.5 8.2 13.9 6.2 -21.8 -12.8 14.6 19.2 15.9 20.0 4.1
SIR (dB) 13.2 12.9 15.5 14.4 12.8 13.2 15.9 16.0 10.7 6.8 -3.0
SAR (dB) 5.3 10.8 7.8 5.5 5.9 5.3 8.1 12.2 5.8 8.7 4.2
Time (s) 1 300 5 10 600 200 9 5 2 2 1000

Table 3. Results for synthetic convolutive mixtures and live recordings with two dif-
ferent microphone spacings

Mixtures Synth 5 cm Synth 1 m Live 5 cm Live 1 m
Algorithm 117 14 15 14 15 117 127 138 14 15 138 14 15
SDR (dB) 2.5 0.9 0.2 0.7 0.6 2.6 -23.2 -20.3 1.2 1.8 -19.0 2.1 3.6
ISR (dB) 6.0 2.8 4.6 2.8 4.4 5.9 -19.2 -17.0 4.0 7.0 -15.5 4.9 8.4
SIR (dB) 5.8 -2.7 4.4 -0.4 4.2 4.6 1.3 2.9 -1.9 4.2 2.9 0.8 6.9
SAR (dB) 4.9 14.1 7.5 10.7 7.5 5.4 6.2 6.2 13.0 6.8 5.8 8.0 6.8
Time (min) 1 20 0.6 20 0.6 1 1 4 20 0.6 4 20 0.6

Modified Discrete Cosine Transform (MDCT), except for algorithms n◦9 and 10
where source estimation was directly performed in the time domain. The direc-
tions of the sources were modeled by the Interchannel Intensity Difference (IID)
or variants thereof in the instantaneous case. The Interchannel Time Difference
(ITD) or the Interchannel Phase Difference (IPD) were additionally used in the
convolutive case. Algorithms n◦2, 4, 5, 9 and 10 were fully blind, while others re-
quired manual input of the number of sources or the source directions.

4 Results

The performance of each algorithm was assessed by sorting the estimated source
image signals so as to maximize the average SIR and successively averaging the
measured SDR, ISR, SIR and SAR over the sources and over the mixtures. The
resulting figures are given in Tables 2 and 3 for instantaneous and convolutive
mixtures respectively, along with platform-specific computation times. The large
negative SDR and ISR figures for algorithms n◦5, 6, 12 and 13 are due to incor-
rect scaling of the submitted source images. Detailed results and sound files are
available at http://sassec.gforge.inria.fr/.

In the instantaneous case, most algorithms provided similar SIR and SAR
values clustered around 13 dB and 6 dB respectively, denoting high interfer-
ence rejection but clear artifacts. Algorithms n◦2 and 8 resulted in fewer arti-
facts, while algorithms n◦10 and 14 provided more interference. Note that blind

7 Average performance for speech mixtures only.
8 Average performance over the two estimated sources for speech mixtures only.
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algorithms n◦9 and 10 achieved similar source localization accuracy as non-blind
algorithms n◦3, 7 and 8, as shown by large ISR values.

In the convolutive case, most algorithms provided again similar SIR and SAR
values but around 4 dB and 6 dB respectively, indicating both strong interference
and artifacts. Algorithms n◦11 and 15 resulted in slightly less interference, while
algorithm n◦14 provided much more interference but less artifacts. Interestingly,
performance did not vary much between synthetic convolutive mixtures and live
recordings or with different microphone spacings.

5 Conclusion

In this article, we described the test data and objective performance criteria used
in the context of the first stereo audio source separation evaluation campaign and
summarized the approaches behind the fifteen submitted algorithms and their
results. We are currently planning to complement objective performance figures
by listening tests and present detailed results on the campaign website. We hope
that this campaign fosters interest for evaluation in the source separation com-
munity and that larger-scale regular campaigns will take place in the future. The
creation of a collaborative organization framework appears crucial to this aim,
since it would allow sharing between the participants of time-consuming tasks
such as the collection of test data under appropriate licenses and the recording
of live mixtures.
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