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Abstract—This paper presents a method for enhancing target
sources of interest and suppressing other interference sources. The
target sources are assumed to be close to sensors, to have domi-
nant powers at these sensors, and to have non-Gaussianity. The
enhancement is performed blindly, i.e., without knowing the po-
sition and active time of each source. We consider a general case
where the total number of sources is larger than the number of
sensors, and neither the number of target sources nor the total
number of sources is known. The method is based on a two-stage
process where independent component analysis (ICA) is first em-
ployed in each frequency bin and then time-frequency masking is
used to improve the performance further. We propose a new so-
phisticated method for deciding the number of target sources and
then selecting their frequency components. We also propose a new
criterion for specifying time-frequency masks. Experimental re-
sults for simulated cocktail party situations in a room, whose rever-
beration time was 130 ms, are presented to show the effectiveness
and characteristics of the proposed method.

Index Terms—Blind source extraction, blind source separation
(BSS), convolutive mixture, frequency domain, independent com-
ponent analysis, permutation problem, time-frequency masking.

I. INTRODUCTION

THE technique for estimating individual source components
from their mixtures at sensors is known as blind source

separation (BSS) [1]–[4]. With some applications such as brain
imaging or wireless communications, it makes sense to extract
as many source components as possible, because many sources
are equally important. However, with audio applications such as
speech enhancement, the sources do not necessarily have equal
significance. We often want to extract only a few sources that are
close to sensors, have dominant powers, and/or have interesting
features.

This paper presents a method for extracting source signals
of interest and suppressing other interference sources blindly.
Let us formulate the task. Suppose that a few target sources

and other background sources are con-
volutively mixed and observed at sensors

(1)
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Fig. 1. Signal notations.

where

(2)

is the component of measured at sensor . The impulse re-
sponse from source to sensor is denoted as . The goal
is to have output signals , that are close to the
components

(3)

of target sources measured at a selected sensor . The task
should be performed only with the mixtures . The
number of target sources and the total number of sources
are unknown. The number is assumed to be no more than
the number of sensors , and may be larger than . Fig. 1
shows the signal notations.

The first problem is how to extract target sources
blindly. Even if the total number of sources could be larger
than , independent component analysis (ICA) [1]–[4] with
an assumption produces components that maxi-
mize an ICA criterion such as non-Gaussianity. We assume that
the target sources are non-Gaussian, close to sensors, and dom-
inant in the mixtures. Therefore, we expect that some of the

components produced by ICA correspond to target sources
whose ICA criteria are high.

We employ ICA in the time-frequency domain [5]–[11]. The
reason is that it is efficient [11] and also fits time-frequency
masking, which is discussed below. An additional operation that
should be performed is the selection of each target component
in every frequency bin. This is considered to be the permutation
problem of frequency-domain BSS [12]. It has been reported
that the selection of a component with maximum kurtosis works
well when the target is speech and the interferences are babble
sources [13]. However, this does not always work well for a case
where the interferences are also speech.
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Fig. 2. Flow of proposed method.

In order to solve the permutation problem for mixtures with
many speeches, we exploit the information of basis vectors (10)
produced by ICA. Our previously reported methods estimate
the directions [12], [14] and/or the distances [14] of the sources
from the basis vectors, and then cluster the estimated directions
and/or distances to solve the permutation problem. However,
the system needs to know the locations of sensors to estimate
such geometric information about the sources. In Section IV,
we propose a new method for solving the permutation problem
by clustering the basis vectors themselves after some normal-
ization. With this approach, we do not need to know the sensor
locations, simply the maximum distance between a sensor and
any other sensor. This relaxation makes it easy to use a nonuni-
form arrangement of sensors, and also eliminates the need for
sensor calibration.

The next issue is that some interference still remains in
the extracted frequency components when . Post
filtering [13], [15] can be used to reduce such residual inter-
ference. However, it needs additional adaptation where the
step size should be controlled based on the short-term power
of the target. Another approach is time-frequency masking
[16]–[22], which is efficient for sources with sparseness in
the time-frequency domain, such as speech. Time-frequency
masking has been well studied in the research area of compu-
tational auditory scene analysis [22]–[26]. The performance of
time-frequency masking depends on how well we can specify
the time-frequency slots where the target source is active. A
simple way to specify such slots is to calculate the phase and/or
amplitude difference between the observations of different sen-
sors [16]–[18]. Another recently proposed approach involves
calculating the power ratio between an input and outputs of a
spatial filter (beamformer [20], [21] or ICA [21]). However,
such a power-based criterion depends on the scaling ambiguity
of ICA or beamformer outputs. In Section V, we propose a new
criterion for specifying masks. It is based on the cosine distance
between a sample vector and the basis vector corresponding
to a target. The distance is calculated in a spatially whitened
space where the target basis vector is expected to be almost or-
thogonal to those of interferences. Therefore, the new criterion
does not suffer from the problem of scaling ambiguity.

This paper is organized as follows. The next section provides
an overview of our proposed method. Section III discusses how
ICA can be applied to our situation and what should be done
for the ICA results. Section IV describes how basis vector clus-
tering works to solve the permutation problem and to decide the
number of target sources to be extracted. Section V discusses
how to specify time-frequency masks. Section VI presents ex-
perimental results, and Section VII concludes this paper.

II. OVERVIEW OF PROPOSED METHOD

Fig. 2 shows the flow of the proposed method. First, time-do-
main observed signals sampled at frequency are con-
verted into frequency-domain time-series signals with
an -point short-time Fourier transform (STFT)

(4)

where is a frequency,
is a window that tapers smoothly to zero at each end,

such as a Hanning window , and is a
new index representing time.

The following operations are performed in the frequency do-
main. There are two advantages to this. First, the convolutive
mixtures (1) can be approximated as instantaneous mixtures at
each frequency

(5)

where is the frequency response from source to sensor
, and is a frequency-domain time-series signal of

obtained by the same operation as (4). The frequency-domain
counterpart of (3) is

(6)

where should be the same for all frequency bins . The second
advantage is that the sparseness of a source signal becomes
prominent in the time-frequency domain if the source is colored
and nonstationary such as speech. The possibility of
being close to zero is much higher than that of .

Then, we apply ICA (Section III) to the STFT results

(7)

which we call a sample vector, and obtain basis vec-
tors defined by (10) and independent
components

(8)

Some of these independent components correspond to the com-
ponents of dominant sources. However, the correspondence is
not clear at this stage because of the permutation ambiguity
of ICA. Thus, basis vector clustering (Section IV) is per-
formed to decide the number of target sources and produce
basis vectors and independent components
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, whose correspondences to the target
sources are specified.

If the number of total sources is larger than the number
of sensors , independent components
produced by ICA have some residuals caused by the lim-
itation of spatial filtering. Time-frequency masking (Sec-
tion V) is used to reduce such residuals and to obtain outputs

, which should be close to (6) in each
frequency bin. At the end of the flow, time-domain output
signals are obtained by an inverse STFT (ISTFT)

for .

III. INDEPENDENT COMPONENT ANALYSIS (ICA)

To extract the components of dominant sources, we apply
ICA to sample vectors . Even though the total number
of sources may be larger than the number of sensors , we
employ ICA by assuming that the number of independent com-
ponents is equal to

(9)

where is an separation matrix.
In the experiments shown in Section VI, we calculated by
using a complex-valued version of FastICA [3], [27], and im-
proved it further by using InfoMax [28] combined with the nat-
ural gradient [29] whose nonlinear function is based on the polar
coordinate [30].

Then, we calculate the inverse of to obtain basis vectors

(10)

It is not difficult to make invertible by using an appropriate
ICA procedure, such as whitening followed by unitary transfor-
mation (e.g., FastICA [3]). By multiplying both sides of (9) by

, the sample vector is represented by a linear com-
bination of basis vectors

(11)

By comparing (11) and the vector notation of the mixing
model (5)

(12)

where , we observe the following fact.
Since are assumed to be dominant non-Gaussian
sources, it is strongly expected that some of corre-
spond to and thus some of correspond
to . The correspondence between and as
well as the number of target sources are unknown at this time,
because of the permutation ambiguity of ICA. They will be
specified by basis vector clustering as described in Section IV.

Fig. 3. ICA example for real instantaneous mixtures (N = 3,M = 2,Q = 1).

Once the correspondence between basis vectors and target
sources are identified, i.e., the permutation problem is solved,
we solve the scaling ambiguity in (11)

(13)

for any nonzero complex scalar . This is easily solved by

(14)

where is the index of the sensor specified in (6). The reason is
as follows. The goal in each frequency bin is to make as
close to defined in (6) as possible. And we can derive
relations

(15)

from (6), the term in (12), and the term in (11).
Here, we have a simple example to see how well standard ICA

works for such a case where the number of total sources is
larger than the number of sensors , but the number of domi-
nant sources is no more than . Fig. 3 shows some plots for
real instantaneous mixtures. The left-hand plot shows the mix-
tures. The square shows the mixing vector of the dominant target
source, and the two triangles show those of the other less dom-
inant sources. The center plot shows whitened mixtures, where
separation is not achieved. The right-hand plot shows the ICA
result, where the mixing vector of the dominant target source is
identified.

IV. BASIS VECTOR CLUSTERING

The purpose of basis vector clustering is to solve the permu-
tation problem and also to decide the number of dominant
target sources. As shown in [12], integrating the basis vector

and signal envelope information solves the per-
mutation problem robustly and precisely, and we also employ
this approach in the experiments shown in Section VI. In the
rest of this section, we discuss a new method for exploiting the
basis vector information.

A. Frequency Normalization

The new method involves normalizing all basis vectors ,
, for all frequency bins ,
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Fig. 4. Direct-path (near-field) model.

such that they form clusters, each of which corresponds
to an individual source. The normalization is performed by se-
lecting a reference sensor and calculating

(16)

where is the propagation velocity, and is the maximum
distance between the reference sensor and any sensor

. Then, we apply unit-norm normalization

(17)

for .
Here, we explain why normalized basis vectors form a

cluster for a source. Let us approximate the multipath mixing
model used in (1) and (5) by using a direct-path (near-field)
model (Fig. 4)

(18)

where is the distance between source and sensor .
We assume that the phase depends on the
distance normalized with the distance to the reference sensor .
This assumption makes the phase zero at the reference sensor .
We also assume that the attenuation depends on both
the distance and a frequency-dependent constant .

By considering the permutation and scaling ambiguity of
ICA, a basis vector and its elements are represented as

(19)

where is a nonzero complex scalar representing the scaling
ambiguity, and index , which may be different from index ,
represents the permutation ambiguity. Substituting (18) and (19)
into (16) and (17) yields

which is independent of frequency, and dependent only on the
positions of the sources and sensors. Therefore, normalized

basis vectors form a cluster for a source that is placed at
a specific position.

Let us discuss the intention of using for the de-
nominator of (16). From the fact that

, an inequality

(20)

holds. This property is important for the distance measure (22),
which will be used for the clustering algorithm. In the range
specified by (20), the distance between two elements in-
creases monotonically as the difference between two arguments

increases. If argument falls out of the
range (20), the distance would decrease as the difference

increases, which would adversely affect the
distance measure (22).

B. Clustering Basis Vectors and Solving Permutation
Ambiguity

After normalizing all basis vectors , and
, , we perform a clustering

algorithm to find clusters formed by normalized
vectors . The centroid of a cluster is calculated by

(21)

where is the number of vectors in . The clustering cri-
terion is to minimize the total sum of the squared distances
between cluster members and their centroid

(22)

This minimization can be performed efficiently with the
k-means clustering algorithm [31]. Some examples of clus-
tering results are shown in Figs. 10 and 11.

Once we have found clusters , we need to
identify clusters that correspond to dominant target sources

. We decide that a cluster with a small variance
belongs to the set of target sources. The rationale

behind this criterion is that the mixing model (18) is more valid
for than for the other sources. For target sources

, the direct-path components of impulse responses
are distinct since is assumed to be close to the sensors.

To identify target source clusters, we sort the clusters
so that their variances are sorted in ascending order

(23)

where is a predefined threshold for specifying the set of
target sources. Then, to align the permutation ambiguity of ICA,
we renumber the indexes of the basis vectors by

(24)
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where is a one-to-one map-
ping decided for each frequency by

(25)

We also renumber independent components
accordingly.

V. TIME-FREQUENCY MASKING

A. Motivation

Let us discuss the motivation for using time-frequency
masking. Suppose that the permutation ambiguities of ICA
solutions are solved at this stage. Then, the extraction of a
dominant source by ICA (9) is represented by

(26)

(27)

If , satisfies , and makes the
second term zero. However, we assume that the total number

of sources is generally larger than . In this case, there
exists a set such that

, . Thus, contains unwanted residuals
. The purpose of time-frequency masking

is to obtain another version of output that contains less
power of the residuals than .

B. Proposed Procedure

Time-frequency masking is performed by

(28)

where is a mask specified for each time-fre-
quency slot . We specify masks based on the angle
between and calculated in the space transformed
by a whitening matrix , .
Let be whitened samples and

be the basis vector in the whitened space. The angle
is calculated by

(29)

for each time-frequency slot (Fig. 5). Then, we calculate a mask
by using a logistic function [26] (Fig. 6)

(30)

where and are parameters specifying the transition point
and its steepness, respectively. As becomes smaller, the
residual power that appears in decreases, but the musical
noise in increases.

The effectiveness of the above operation depends on the
sparseness of sources. If we assume that the possibility of

Fig. 5. Angle � calculated in whitened space.

Fig. 6. Masking functions (30) with three sets of parameters (� ; g).

being close to zero is very high, (12) can be approx-
imated as

(31)

where depends on each time-frequency slot . Let us
consider the whitened-space counterpart of (31), while distin-
guishing between cases where is the only active source (32)
and other cases (33)

(32)

(33)

If the number of sources is equal to or less than the number of
sensors , vectors in the whitened space are
orthogonal to each other. Even if , the vector
of a dominant source , which points in almost the same direc-
tion as , tends to have large angles with the other vectors

. Fig. 5 (and also Fig. 3)
shows such a case. Therefore, calculating the angle (29) pro-
vides information about whether or not is the only active
source at a time-frequency slot , and specifies the corre-
sponding mask accordingly.

VI. EXPERIMENTS

A. Experimental Conditions and Evaluation Measures

We performed experiments to enhance dominant speeches
that were close to microphones. We measured impulse re-
sponses under the conditions shown in Fig. 7. The
speaker positions simulated a cocktail party situation. Mixtures
at the microphones were made by convolving the impulse
responses and 6-s English and Japanese speeches sampled at 8
kHz. We used four microphones , whose arrangement
was three-dimensional and nonuniform. The system knew only
the maximum distance (4 cm) between the reference micro-
phone (Mic. 1) and the others. For each setup, we selected
some of the four speakers (a120, b120, c120, c170) as
dominant target sources, and the others were kept silent. The
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Fig. 7. Experimental conditions.

six speakers away from the microphones were used to provide
interference sources for every setup. The frame size of STFT
(4) was 1024 (128 ms). We used 0.015 to specify the
set of target sources by (23).

The performance was evaluated in terms of the signal-to-in-
terference ratio (SIR) improvement for each output . The im-
provement was calculated by . These
two types of SIR’s are defined by

dB

dB

where is defined in (3), and is the component of
that appears at output : .
The performance was also evaluated by signal-to-distortion

ratio (SDR) to allow us to observe the unwanted effects of time-
frequency masking, such as musical noises. SDR is defined by

dB

where and are scalars for aligning delay and ampli-
tude. They are specified so that the power of the denominator

is minimized.

B. Single-Target Cases

First we show the results for single-target cases .
Experiments were conducted with 16 combinations of seven
speeches (one target six background interferences) for each
target position. The computational time was around 12 s for 6-s

TABLE I
AVERAGE SIR IMPROVEMENT FOR SINGLE-TARGET CASES (DECIBELS)

TABLE II
AVERAGE SDR FOR SINGLE-TARGET CASES (DECIBELS)

speech mixtures. The program was coded in Matlab and run on
Athlon 64 FX-53 (2.4-GHz CPU clock).

Table I shows the average SIR improvements obtained only
with ICA, and by the combination of ICA and time-frequency
(T-F) masking. The SIR improvements clearly depend on the
position of the target source. Positions a120 and b120 were
fairly good for enhancement. This is because the interferences
came from different directions. If we consider the speaker ar-
rangement two-dimensionally, positionsc120 andc170 seems
to be a hard position as many interferences came from similar di-
rections. However, the result for position c170 was very good.
This is because the height of c170 was different from those
of interferences, and the three-dimensionally arranged micro-
phones enable the system to exploit this height difference.

We used three sets of parameters for function (30) specifying
a mask for each time-frequency slot. The shapes of these func-
tions are shown in Fig. 6. Table I shows that a smaller re-
sulted in greater SIR improvements by T-F masking. However,
some sounds with a small were unnatural. Table II shows
that a smaller provided worse SDRs. Therefore, there is
clearly a tradeoff between SIR improvement and SDR. We ob-
served by informal listening tests that in many cases parameter

produced natural sounds with sufficient
interference suppression. Some sound examples can be found
on our web site.1

Fig. 8 shows example spectrograms. We can see that the target
speech was enhanced to a certain degree only with ICA. With
the combination of ICA and T-F masking, some residuals were
eliminated and the harmonic structure appeared more clearly in
the spectrogram (e.g., at time frames from 80 to 90). Moreover,
the active and inactive time of the target speech became clearer
with T-F masking.

Fig. 9 shows examples of envelopes and masks at 969 Hz.
Although the ICA output was close to the target component
at many time frames, some interference components were con-
tained in the ICA output at some time frames (e.g., from 15 to
20). This shows the limitation of ICA as a spatial filter, namely
that the number of interferences that can be eliminated is less

1[Online]. Available: http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/
dominant.
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Fig. 8. Spectrograms for 1) a mixture x (t), 2) an output signal y (t) obtained
only with ICA, 3) an output signal y (t) obtained by a combination of ICA and
T-F masking, and 4) the target source component x (t).

Fig. 9. Envelopes for a target signal, the total sum of all interferences, and the
ICA output corresponding to the target signal (above), and masks calculated for
each time frame (below).

than the number of sensors. The lower plot shows masks spec-
ified for each time frame. These masks show the activity of the
target source at this frequency. By using these masks, the system
eliminated the interference components at the time frames from
15 to 20, and improved the SIR at the output.

Fig. 10 shows an example clustering result for normalized
basis vectors. Of the 4 clusters, there was only one (the
leftmost one) that had a smaller variance than 0.015 in

Fig. 10. Single-target clustering result for normalized basis vectors. Each point
shows the squared distance k�a � c k between a normalized basis vector and
its corresponding centroid. The four clusters are sorted according to J =jC j
as shown in (23).

TABLE III
AVERAGE SIR IMPROVEMENT FOR MULTITARGET CASES (DECIBELS)

Fig. 11. Multitarget clustering result for normalized basis vectors (three dom-
inant sources). Each point shows the squared distance k�a � c k between a
normalized basis vector and its corresponding centroid. The four clusters are
sorted according to J =jC j as shown in (23).

this case. From this fact, the system decided that there was one
dominant target source. This clustering results were also used
to solve the permutation ambiguity of ICA based on (25).

C. Multitarget Cases

Next, we show the results for multitarget cases .
Although we have performed experiments under various con-
ditions, here we simply show the results for cases where three
sources positioned at a120, b120, and c170 were dominant

3 . Experiments were conducted with ten combinations
of nine speeches (three targets six background interfer-
ences). The computational time was around 15 s for 6-s speech
mixtures.

Table III shows the average SIR improvements obtained
solely with ICA, and by a combination of ICA and T-F
masking. Even with such hard input SIRs, the system suc-
ceeded in enhancing the target sources to a certain degree.

Fig. 11 shows an example clustering result for normalized
basis vectors. In this multitarget case, there were three clusters
that had smaller variances than 0.015, and the system
decided that there were three dominant target sources. Again,
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these clustering results were also used to solve the permutation
ambiguity of ICA.

VII. CONCLUSION

We have proposed a new method for extracting dominant
target sources and suppressing other interference sources
blindly. The method is based on a two-stage process where ICA
is first applied to mixtures and then time-frequency masking is
used to reduce residuals, which are caused by the limitation of
ICA when . The main contribution of this paper is to
propose the following two new techniques.

1) Basis vector normalization and clustering, which decides
the number of target sources and aligns the permuta-
tion ambiguity of ICA. The new method does not need to
know the array geometry and therefore makes it easy to
use a three-dimensional nonuniform arrangement of sen-
sors without exact measurement or calibration.

2) Specifying time-frequency masks from the angle
between the basis vector of a target source and a sample
vector in a spatially whitened space. The angle indicates
whether or not the corresponding target source is active at
a time-frequency slot .

Both techniques manipulate basis vectors produced by
ICA, which is a statistical tool for blind processing.

We obtained good experimental results for extracting domi-
nant sources out from many interference sources mixed in a real
reverberant room. The experiments shown in this paper used im-
pulse responses to evaluate extraction performances in terms of
SIR and SDR. We also have tested the system in a live situa-
tion where loudspeakers and/or human speakers made speech
sounds in a real room. The results were as good as the simu-
lated ones where the impulse responses were used.
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