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Abstract—This paper derives two spatio–temporal extensions of
the well-known FastICA algorithm of Hyvärinen and Oja that are
applicable to the convolutive blind source separation task. Our
time–domain algorithms combine multichannel spatio–temporal
prewhitening via multistage least-squares linear prediction with
novel adaptive procedures that impose paraunitary constraints
on the multichannel separation filter. The techniques converge
quickly to a separation solution without any step size selection
or divergence difficulties, and unlike other methods, ours do
not require special coefficient initialization procedures to obtain
good separation performance. They also allow for the efficient
reconstruction of individual signals as observed in the sensor mea-
surements directly from the system parameters for single-input
multiple-output blind source separation tasks. An analysis of one
of the adaptive constraint procedures shows its fast convergence
to a paraunitary filter bank solution. Numerical evaluations of the
proposed algorithms and comparisons with several existing con-
volutive blind source separation techniques indicate the excellent
relative performance of the proposed methods.

Index Terms—Blind source separation (BSS), fixed-point algo-
rithm, independent component analysis, speech enhancement.

I. INTRODUCTION

BLIND source separation (BSS) refers to two classes of
multichannel signal processing tasks in which the goal is

to extract multiple useful signals from multiple linear mixtures
of these signals without specific knowledge of the source
properties or the mixing characteristics. The first task, known
as instantaneous BSS, assumes no multipath in the mixing
system, and thus an instantaneous demixing process is ade-
quate. Instantaneous BSS is often associated with independent
component analysis (ICA), a class of methods for decomposing
multichannel data based on information-theoretic criteria. The
second task, known as convolutive BSS, assumes a general mul-
tipath channel, thus requiring multichannel filtering to achieve
separation. The convolutive BSS task fits several important
signal processing problems, such as multitalker speech sepa-
ration from multimicrophone audio recordings and cochannel
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interference mitigation in wideband multi-input multi-output
wireless communications systems. Although speech separation
and enhancement is the focus of this paper, the algorithms
developed here are applicable to other convolutive BSS tasks as
well as to multichannel blind deconvolution tasks. Algorithmic
solutions to the instantaneous BSS task are generally easier
to develop than those for the convolutive BSS task due to the
single-matrix parametrization of the former task. Numerous
algorithms for instantaneous BSS have been developed; see the
texts [1], [2] for examples.

Several researchers have explored convolutive extensions of
instantaneous BSS procedures. The simplest of these exten-
sions treat the separation task in the (discrete) Fourier domain
and apply existing spatial-only complex-valued ICA and BSS
methods within each frequency bin. To obtain the best perfor-
mance, these methods must address the permutation, amplitude,
and scaling inconsistencies across different frequency bins of
the separation system at convergence to reconstruct the sepa-
rated output signals. Early solutions to the above problems were
proposed in [3] and [4]. Recent advances in permutation/scaling
ambiguity resolution can be found in [5]–[9].

A potentially more elegant solution is to develop convolu-
tive BSS algorithms using a time–domain separation criterion.
An example of this approach is the information-theoretic natural
gradient convolutive BSS and multichannel blind deconvolution
algorithms developed in [10] and [11]. While this procedure can
be successful, the source distributions must be approximately
known, and the number of sources must be exactly known as
they are simultaneously extracted. Also, due to the highly non-
linear and unconstrained nature of the coefficient updates, it can
be challenging to select appropriate step sizes of the algorithm
to obtain fast convergence in a wide range of data scenarios.

The FastICA algorithm of Hyvärinen and Oja [2], [12] is one
of the most well-known and popular procedures for both ICA
and instantaneous BSS. For an -element linear non-Gaussian
signal mixture, the procedure consists of a signal prewhitening
stage followed by a set of fixed-point iterative procedures
that extract independent components using a non-Gaussianity
signal measure. Coefficient vector orthogonality is used to guar-
antee uniqueness of the extracted components. The algorithm
enjoys a number of useful properties, including fast conver-
gence, guaranteed global convergence for certain mixing condi-
tions and contrasts, and robust behavior when noise is present.
Recently, an extension of the FastICA algorithm to convolutive
mixtures has been presented [13]. This particular extension does
not exploit the convolutive nature of the mixing system, and the
initialization scheme it uses is computationally complex. For
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an -source separation task with separation coefficients, a
prewhitening matrix of size must be computed,
and systems of linear equations must be solved using
this prewhitening matrix in order to initialize the coefficients of
the separation system. Unlike the symmetric coefficient orthog-
onality conditions that are used in the original FastICA proce-
dure, the algorithm in [13] uses signal deflation, which leads to
error accumulation in the separated outputs at each separation
stage.

In this paper, we present two novel spatio–temporal ex-
tensions of Hyvärinen and Oja’s FastICA algorithm to both
convolutive BSS and multichannel blind deconvolution tasks.
These algorithms combine multichannel whitening via multi-
stage least-squares linear prediction with fixed-point iterations
that use new adaptive techniques for imposing paraunitary
constraints on the multichannel separation filter. A unique
feature of our approaches are their ability to easily and indi-
vidually reconstruct the sources as they appear in the observed
signal mixtures, thereby generating output signals for each
single source, a technique originally proposed in [14] and
later renamed the single-input multiple-output (SIMO) BSS
separation task [15]. Unlike other approaches, the proposed
methods do not diverge and do not require special step sizes to
be selected (e.g., natural gradient-based methods [10], [11] with
fixed step-size parameters applied to signal mixtures of varying
power levels) and do not require special initialization strategies
or permutation solvers to function (e.g., frequency–domain
methods described in [3]–[9]). Performance comparisons using
data collected from real rooms show that our methods out-
perform other existing approaches when no knowledge of the
sensor configuration and source positions are available, and
their performance for three-source, three-microphone mixtures
is significantly better than existing methods.

The organization of the paper is as follows. In Section II,
we describe the convolutive BSS and reconstruction-focused
SIMO BSS tasks and give a concise derivation of our proposed
spatio–temporal extension of the FastICA algorithm. As our
proposed convolutive BSS algorithms employ paraunitary filter
constraints, two methods for adaptively imposing paraunitary
constraints on a multichannel system structure are given, and
their behaviors are elucidated in Section III. Section IV de-
scribes the prewhitening strategy used in our spatio–temporal
FastICA algorithms and provides a block diagram for com-
puting the SIMO BSS solution using our procedures. Section V
gives the results of numerical experiments on multichannel
room recordings comparing our proposed algorithms with
several existing methods in the signal processsing literature.
Section VI contains our conclusions.

II. PROBLEM FORMULATION AND ALGORITHM DERIVATION

In this section, we describe the signal measurement model
and statistical framework on which our separation methods are
based and give a general form for our proposed spatio–temporal
extensions of the FastICA algorithm.

Let , denote spatially independent source
signals, such that is statistically independent of for

. These sources are measured in an -dimensional signal
mixture with as

(1)

for , where are the coefficients of the mul-
tichannel mixing system, and is uncorrelated Gaussian
sensor noise. The goal of convolutive BSS is to compute a set
of separated signals for as

(2)

where is a filter length parameter, such that each is
nearly a filtered version of one for some unique set of
assignments , . If this is the case, all
sources in are uniquely represented in the output sig-
nals up to ordering and filtering ambiguities. The sepa-
ration task then becomes one of adapting the parameters

to approximately achieve a separated result.
In the SIMO BSS task [14], [15], the goal is to extract esti-

mates of the sources as they appear in the signal mixtures, ide-
ally given by the signal set

(3)

for and . In practice, each is
estimated from the separated signals as

(4)

where the coefficients must be estimated or calculated
from the separation system, the extracted signals ,
and/or the original input signal mixtures . Thus, both
the convolutive BSS and SIMO BSS tasks require separated
signals to be estimated.

Criteria for adapting the parameters can be loosely
classified into three types: those based on non-Gaussianity of
the sources, those based on nonstationarity of the sources, and
those based on the correlation properties of the sources [16].
As our approaches are extensions of the FastICA algorithm,
they exploit the non-Gaussianity of the sources, a reasonable
assumption for speech signals. Our approaches are based on the
following assumption of the sources themselves, an as-
sumption that is also used in [17], [18] to develop criteria for
convolutive BSS.

Assumption: Each source signal is a linearly filtered
version of an underlying zero-mean unit-variance non-Gaussian
random process as

(5)

where is the assumed model-order, and each sequence
is statistically independent in time and space, and are the
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coefficients defining the correlation properties of the sources
.

The above assumption allows one to effectively consider the
convolutive BSS task as a multichannel blind deconvolution
task, whereby the goal is to extract all of the innovation pro-
cesses in by enforcing their spatio–temporal
independence properties. A solution to this task can be obtained
by formulating an adaptive procedure in the combined coeffi-
cients , where

(6)

and

(7)

In the sequel, the adaptive procedure we develop will be trans-
lated to an adaptive procedure on the observed system parame-
ters as opposed to the combined system parameters . The
interaction of coefficients and is largely respon-
sible for the initial conditions on . With proper initializa-
tion, some algorithms tend to demonstrate a faster convergence.

We have the freedom to define additional constraints on the
output signals to make our adaptive algorithm design
easier. It is advantageous to enforce the same second-order un-
correlated properties possessed by on , as then
the combined system represented by satisfies the parau-
nitary filter constraints

if and
otherwise.

(8)

Paraunitary filters are the multichannel extension of allpass
filters and have numerous applications in coding and system
modeling; for details, see [19]. The constraints in (8) are the
spatio–temporal extension of orthonormality constraints on
the rows (or columns) of a square matrix used by the FastICA
procedure for instantaneous BSS.

Consider the goal of extracting a single independent source
in by adjusting the parameters , , and

according to an appropriate non-Gaussianity
measure or contrast. The time index of the source we extract
in this formulation is unimportant, because we place no con-
straints on the overall delay of the system and because all sam-
ples of a given source for all can be obtained by a fil-
tering operation using the converged parameters. This problem
is essentially what the single-unit FastICA procedure already
solves in the instantaneous BSS case; the only difference is the
doubly infinite nature of the filtering model which will have to
be truncated to finite length for implementation purposes. By en-
forcing the signals to each have unit variance and col-
lectively be spatio–temporally uncorrelated; however, we can
use the constraints in (8) to restrict the filter coefficients
to the space of paraunitary filters, where paraunitariness can be
imposed jointly across all filter channels or preferentially to cer-
tain filter channels according to a prescribed channel ordering.

The use of paraunitary constraints in the prewhitened convolu-
tive BSS problem is a key concept in our algorithm develop-
ment.

To make paraunitary constraints practical, we need to trans-
late the constraints to a set of filter coefficients that are easily ad-
justed. Suppose describes a multichannel prewhitening
filter in the principal signal subspace, such that the signals

(9)

are uncorrelated in space and in time with unit variance. Define

(10)

(11)

Furthermore, define

(12)

(13)

as the separation system coefficient vector for the th system
output. Then, we compute the th separated signal sequence as

(14)

for , assuming a data record length of samples,
where are the adjustable system parameters. Due to the
statistical orthogonality of the prewhitened signals in
space and in time, we can constrain to be jointly parau-
nitary, i.e.,

if and
for

(15)

where is an integer less than due to the finite length of the
separation system, and is assumed to be zero outside of the
range . Thus, our single-unit FastICA procedure
in this scenario has the following structure.

Step 1) Compute in (14) for .
Step 2) Update the coefficient vector as

(16)

where is the FastICA algorithm nonlinearity
and is its derivative [2].

Step 3) Impose all or a subset of the paraunitary constraints
defined by (15) on the coefficients within
depending on the type of extraction method (e.g.,
sequential or parallel).

Note that the choice of FastICA algorithm nonlinearity
in (16) is governed by the same rules and considerations as in the
instantaneous BSS case. As has been observed, many choices of
nonlinearity are possible, with the most popular choices being

for and , .
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III. ADAPTIVE PARAUNITARY CONSTRAINTS

The spatio–temporal FastICA procedure outlined in the pre-
vious section requires a technique to impose paraunitary filter
constraints on a multichannel linear filter. Due to the FastICA
coefficient updates, we are motivated to develop procedures that
impose these constraints on multichannel FIR filters. While a
direct projection method could be developed, such a technique
would likely involve a significant computational overhead if
conventional methods ( e.g., Gram–Schmidt) were employed.
In this section, we describe two simple adaptive procedures for
imposing paraunitary filter constraints on the separation system
coefficients . Since these procedures are adaptive, several
iterations of each procedure are needed after each coefficient up-
date in (16) to maintain system paraunitariness.

A. Sequential Orthogonalization

Our first procedure assumes a standard sequential implemen-
tation of the FastICA procedure, in which sources are extracted
one by one from the signal mixtures. The procedure assumes
that for have converged to separating solu-
tions. The procedure is given as follows.

1) Normalize the length of the coefficient vector as

(17)

2) While is not paraunitary with , , ,

(18)

where

(19)

(20)

and the th element of is given by

if

otherwise.
(21)

To understand the above method, define the -dimen-
sional th system vector polynomial as

(22)

Then, (18)–(21) can be expressed using polynomials as

(23)

where denotes truncating the polynomials of its argument
to order through . Extensive simulations of this iterative
subprocedure indicate that (23) causes

(24)

(25)

The above constraints are a spatio–temporal extension of the or-
thonormality constraints imposed on in the original FastICA
procedure and imply that the separation system is paraunitary.

As further justification of the iterative procedure for enforcing
paraunitary constraints, let , and define

(26)

(27)

Then, (23) can be rewritten as

(28)

where denotes Hermitian transpose. Define the variables

(29)

(30)

where . The condition im-
plies that form an -dimensional parauni-
tary sequence if is already paraunitary.
Then, (28) implies that these state variables evolve as

(31)

(32)

This pair of nonlinear coupled scalar equations can be easily
simulated for different initial conditions, and such simulation
studies show that and converge to zero for a wide range
of initial value pairs. Empirically, we have observed conver-
gence of this system if

or (33)

which are typically satisfied in practice.
We now investigate the numerical performance of the itera-

tive paraunitary constraint scheme in (18)–(21). For these evalu-
ations, we have chosen and . For each simulation
run, was initialized to a 510-element vector containing zero-
mean uncorrelated Gaussian noise of variance summed
with a single nonzero unity-valued “center” tap at position

. Shown in Fig. 1 for are
the average evolutions of and , computed from
the elements of for , as averaged over 100 dif-
ferent simulation runs. As can be seen, convergence to a parau-
nitary condition given by and is fast,
approaching the machine precision of MATLAB in about ten
iterations. We observed similar convergence speeds of this pro-
cedure in practical speech separation experiments as well.
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Fig. 1. Evolution of Efa g and Efa g for (18)–(21).

B. Symmetric Orthogonalization

The above adaptive subprocedure imposes paraunitariness in
a sequential fashion to the system vectors . In other words,
the value of affects the solutions of , , the value
of affects the solutions of , , and so on. This
effect is similar to that observed in the original FastICA algo-
rithm applied in a sequential fashion with Gram–Schmidt coeffi-
cient orthogonalization. While this type of constraint is robust in
terms of source acquisition, it causes error accumulation in the
separated system outputs, such that sources extracted “later” in
the separation process have worse signal-to-interference ratios.

We now describe a symmetric method for imposing adaptive
paraunitary constraints jointly on all , . Complete
details regarding this procedure, including a proof of conver-
gence and an analysis of its convergence speed, can be found in
[20]. The procedure is given as follows.

1) Normalize all vectors , , as

(34)

2) While the are not jointly paraunitary, do for all

(35)

where is as defined in (19).
In order to better see the structure of this algorithm, define

the -transform matrix

...
... (36)

Then, this algorithm can be written as

(37)

For , this procedure is a Newton-based adaptive orthogo-
nalization scheme; see [21] for more details as well as a conver-
gence analysis of the procedure. Typically, between 10 and 20
iterations of this procedure are needed at each FastICA update
to obtain a system that is sufficiently close to paraunitariness for
speech separation applications.

IV. SYSTEM ARCHITECTURE AND PREWHITENING METHOD

We now describe the system architecture for implementing
our spatio–temporal FastICA procedures. With careful design, it
is possible to both achieve good separation quality and perform
signal reconstruction efficiently for SIMO BSS tasks.

Previous work on SIMO BSS has yielded two strategies for
finding in (4) after the separated sources have
been found. The first strategy uses traditional linear estimation
to calculate the coefficients, where the are the
desired signals, and the are the reference signals [22].
This approach is complicated if the are not uncorrelated
in time, however, as it involves disjoint -dimen-
sional estimation tasks. Moreover, it requires signal averaging
between the and the . The second calculates the
inverse of the separation system for the [14]. This proce-
dure is challenging due to the difficulty of calculating a multi-
channel system inverse that does not exploit a specific system
structure. These procedures generally require filter lengths
that are longer than that of either the separation system or the
original mixing channel.

We propose a different strategy. Consider Fig. 2, which shows
a signal processing architecture containing a prewhitening
stage, a separation stage, and a signal reconstruction stage.

The goal of the prewhitening stage is to decorrelate the orig-
inal signal mixtures in both space and time. We propose a mul-
tistep prewhitening structure using pairs of multichannel linear
systems with transfer function matrices given by

...
...

. . .
(38)

...
...

. . .
(39)

where the causal and are multichannel FIR fil-
ters of length , the causal filters and have
unity zero-lag coefficient values, and and are

diagonal scaling matrices. The coefficients for the th row of
the transfer function matrices are calculated by solving
a least-squares multichannel forward linear prediction task, e.g.,
by minimizing the output power of the th output signal. The
diagonal entries of are then calculated so that the scaled
forward error residuals have unity variances. These scaled error
residuals are used as inputs to the multichannel system,
in which the th row of the transfer function matrices
are calculated by solving a second least-squares multichannel
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Fig. 2. Block diagram of the combined separation and signal reconstruction system.

forward linear prediction task. The diagonal entries of are
subsequently calculated so that these error residuals have unity
variances. Note that this proposed method is a block-based pro-
cedure.

Several stages of this processing strategy are usually required
because the estimation of and is performed in a
disjoint and sequential fashion. The exact number of stages
can be made adaptive, with a stopping criterion that depends on
how much and differ from identity.

The above prewhitening strategy has an important advantage:
both and can be easily inverted without calculating
any new filter coefficients, using the linear system equivalent of
backsubstitution. Thus, so long as the linear system within the
separation stage can be easily inverted, creating the inverse of
the entire prewhitening-separation system is straightforward.

The goal of the second stage is to perform separation of the
prewhitened signal mixtures based on non-Gaussianity. One
can use a sequential extraction strategy, where the sources
are extracted one by one using the adaptive paraunitary con-
straint procedure in (18)–(21). This first algorithm is called the
spatio–temporal FastICA 1 (STFICA1) algorithm in the Simu-
lations section. Alternatively, one can use a parallel extraction
strategy, where separation units are updated at each iteration,
and the adaptive paraunitary constraint procedure in (34)–(35)
is used. This algorithm is called the spatio–temporal FastICA
2 (STFICA2) algorithm in the Simulations section. Table I
provides MATLAB code for implementing the STFICA1 al-
gorithm complete with appropriately chosen stopping criteria,
where is the prewhitened signal matrix, is the
separation system filter length, and is the maximum
number of iterations of the FastICA routine.

The goal of the last set of parallel stages, shown at the bottom
of Fig. 1, is to reconstruct the individual sources as they appear
in the original mixtures. The reconstruction of the th separated
signal involves setting all but the th signal to zero and
then passing this signal through the inverse of the prewhitening
and separation systems. For this calculation, note that

(40)

due to the paraunitariness of as constructed by the sep-
aration stage. Because of the triangular structures of the
and systems, they can be easily inverted.

The method we have described has a number of advantages
over competing approaches.

1) No step size needs to be selected.
2) Knowledge of the source distributions is not needed, so

long as their statistics imply a nonzero contrast value.
3) For the STFICA1 algorithm, the number of non-Gaussian

sources within the mixture need not be known a priori.
4) For SIMO BSS, the system inverse used for signal recon-

struction is computed directly and exactly.
5) Convergence of the STFICA1 and STFICA2 procedures

appears to be as fast as its spatial-only counterparts. The
single-unit STFICA1 procedure usually requires fewer
than ten iterations per unit when the sources are i.i.d.

V. NUMERICAL EVALUATIONS

We now present numerical evaluations comparing the perfor-
mance of the proposed convolutive BSS methods with several
existing techniques in the signal processing literature.
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TABLE I
MATLAB IMPLEMENTATION OF THE STFICA1 ALGORITHM UPDATE

Fig. 3. Laboratory measurement environment used for numerical evaluations.

Data for these evaluations was generated in an acoustically
isolated laboratory environment with up to three loudspeakers
playing recordings of talkers (one female and two male) as the
sources. The sources were located 127 cm away from three om-
nidirectional microphones and were spaced at angles of 30 ,
0 , and 27.5 from the angle of incidence of the microphone
array. Two arrangements of microphones were used: 1) a nearly
uniform linear array with 4-cm spacing and 2) an equilateral tri-
angular array arranged in a vertical plane with 8-cm spacing.
Two room reverberation conditions were created in the room
corresponding to reverberation times of 300 and 425 ms, respec-
tively. Fig. 3 shows a photograph of the laboratory setup for the
300-ms reverberation experiment with three sources and a uni-
form linear array. All measurements were made using 7 s of data

Fig. 4. Impulse responses measured from the uniform linear array, RT =

300 ms condition.

per channel and a 48-kHz sampling rate and were downsampled
to an 8-kHz sampling rate for processing. Figs. 4 and 5 show the
impulse responses of the loudspeaker/microphone paths for re-
verberation times of 300 and 425 ms, respectively, as calculated
using pseudorandom noise sequences. For purposes of corre-
lating these plots with the photograph in Fig. 3, the microphones
are labeled as 1, 2, and 3 from right to left in the photograph,
and the loudspeakers are labeled as 6, 7, and 8 from right to left
in the photograph with directions of arrival of 27.5 , 0 , and

30 , respectively.
The two proposed STFICA algorithms were run on this data

with one stage (for the ms conditions) or two stages
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Fig. 5. Impulse responses measured from the uniform linear array, RT =

425 ms condition.

(for the ms conditions) of least squares prewhitening
using both and filters with lengths of
taps per filter. Each separation system used taps per
input–output filter channel. In addition to these two STFICA
algorithms, five additional algorithms were evaluated using this
data:

• Parra’s decorrelation-based method with the following
choices: number of diagonalized matrices 5,
number of data blocks averaged 10, FFT size

1024 , -tap time-domain filters per input-output
channel, and a 1000-iteration limit [6];

• Parra’s decorrelation-based method with beamforming ini-
tialization using the above parameter settings [7],

• bin-wise natural gradient frequency-domain (NGFD)
method with “center-spike” initialization, ,

, with 100 iterations;
• bin-wise natural gradient frequency-domain (NGFD)

method with beamforming initialization using the above
parameter settings;

• Natural gradient time domain (NGTD) method using
causal FIR filters and “center-spike” initialization, a step
size schedule of for 200 data passes fol-
lowed by for a single data pass followed by

for a single data pass, [11].
These algorithms were selected due to their widespread use as
tools within modified approaches [5], [8], [9]. After separation is
performed, least-squares methods are used to estimate the con-
tributions of the source recordings to each of the recorded mix-
tures as well as the separated results from each algorithm. By
calculating power ratios, we compute the average improvement
in signal-to-interference-plus-noise ratio (SINR) for each algo-
rithm in each data case.

Fig. 6 shows the performance of the various algorithms on
data collected using two- and three-microphone uniform arrays
in terms of average improvement in SINR. We consider each
data case separately.

Case 1: , Uniform Linear Array, ms: The
best performing algorithm in this case is NGFD algorithm with

Fig. 6. Performance of various separation methods under two reverberation
conditions (RT = 300 ms and 425 ms) for a uniform linear microphone array,
m = 2 and m = 3 source cases.

beamforming initialization, in which the average SINR im-
provement is 13.8 dB across the two outputs. The STFICA1
and STFICA2 algorithms achieve a 11.8- and 9.8-dB average
SINR improvement. These latter two algorithms, however, do
not require knowledge of the directions of arrival of the sources
for their initialization, whereas the NGFD algorithm without
this information only achieves an average improvement of 1.3
dB.

Case 2: , Uniform Linear Array, ms: In
the three-source cases, the proposed STFICA algorithms per-
form the best, achieving 9.7 and 9.9 dB of average SINR im-
provement. The best-performing algorithms in the comparison
employed geometric knowledge of the source and sensor posi-
tions and obtained a 9.1-dB average SINR improvement in the
best case (NGFD).

Case 3: , Uniform Linear Array, ms: In
this more-reverberant environment, the best performing algo-
rithm was the NGFD algorithm with beamforming knowledge,
in which a 6.5-dB improvement in SINR was obtained. The pro-
posed STFICA algorithms gave nearly the same performace at
6.1 and 6.2 dB, respectively, and the latter methods do not re-
quire knowledge of sensor positions to work well.

In general, the best versions of the methods based on non-
Gaussian statistics generally out-perform the methods based on
second-order decorrelation. Also, the STFICA2 algorithm using
symmetric orthogonalization usually outperforms the STFICA1
algorithm using sequential orthogonalization. It should be noted
that both STFICA procedures were easy to evaluate in these ex-
periments as they need only to be run once. The other procedures
are gradient-based methods that require significant hand-tuning
of step size parameters, careful selection of the number of data
passes, and a careful initialization strategy in order to obtain
good separation performance and to avoid divergence.

Fig. 7 shows the performance of three algorithms in a three-
source mixture case for a triangular microphone array. In this
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Fig. 7. Performance of various separation methods under anRT = 300ms re-
verberation condition for a nonuniform linear microphone array,m = 3 source
case.

case, direction of arrivals are not as easily calculated, so only al-
gorithms with generic (e.g., “center-spike”) initializations have
been evaluated. As can be seen, the proposed STFICA algo-
rithms perform well in this situation despite having an unknown
array geometry, unknown source positions, and generic initial-
ization strategies.

The run-time of the proposed algorithms was found at par
with the other algorithms. In the two source scenario, the se-
quential version of the algorithm took 1.85 s for a single iteration
of the algorithm per source, where as the symmetric version of
the algorithm took 2.75 s on a Pentium 4 (3.6-GHz) processor
with 2 GB of RAM. For the three-source case, the sequential
version of the algorithm took 4.00 s, where as the symmetric
version of the algorithm took 6.50 s. These times also included
the time taken for two-stages of least squares prewhitening of
the input data.

VI. CONCLUSION

This paper presents two spatio–temporal extensions of the
well-known FastICA procedure that are useful for convolutive
blind source separation tasks such as speech separation of mul-
tichannel microphone recordings in room environments. Our
methods employ least-squares prewhitening along with novel
iterative schemes for maintaining paraunitary constraints on the
separation system. The procedures can be used to reconstruct the
contributions of each of the sources in each of the sensor signals
without estimating or calculating additional impulse responses
or signal properties. When applied to multichannel recordings of
two- and three-source speech mixtures, the algorithms are found
to perform well and in a robust manner as compared to other ex-
isting approaches to convolutive BSS tasks. A chief advantage
of the proposed methods is their simple setup; the algorithms do
not require significant parameter tuning in order to obtain good
separation performance.
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