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Abstract. The presented study explores the extent to which tactile
stimuli delivered to five chest positions of a healthy user can serve as
a platform for a brain computer interface (BCI) that could be used in an
interactive application such as robotic vehicle operation. The five chest
locations are used to evoke tactile brain potential responses, thus defin-
ing a tactile brain computer interface (tBCI). Experimental results with
five subjects performing online tBCI provide a validation of the chest lo-
cation tBCI paradigm, while the feasibility of the concept is illuminated
through information-transfer rates. Additionally an offline classification
improvement with a linear SVM classifier is presented through the case
study.

Keywords: tactile BCI, P300, robotic vehicle interface, EEG, neurotech-
nology.

1 Introduction

Contemporary BCIs are typically based on mental visual and motor imagery
paradigms, which require extensive user training and good eyesight from the
users [21]. Recently alternative solutions have been proposed to make use of spa-
tial auditory [15,3,17] or tactile (somatosensory) modalities [12,1,11,20,10,7] to
enhance brain-computer interface comfort and increase the information trans-
fer rate (ITR) achieved by users. The concept reported in this paper further
extends the previously reported by the authors in [10] brain somatosensory (tac-
tile) channel to allow targeting of the tactile sensory domain for the operation
of robotic equipment such as personal vehicles, life support systems, etc. The
rationale behind the use of the tactile channel is that it is usually far less loaded
than auditory or even visual channels in interfacing applications.

The first report [12] of the successful employment of steady-state somatosen-
sory responses to create a BCI targeted a low frequency vibrotactile stimulus
in the range of 20− 31 Hz to evoke the subjects’ attentional modulation, which
was then used to define interfacing commands. A more recent report [20] pro-
posed using a Braille stimulator with 100 ms static push stimulus delivered to
each of six fingers to evoke a somatosensory evoked potential (SEP) response
and the following P300. The P300 response is a positive electroencephalogram
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event-related potential (ERP) deflection starting at around 300 ms and lasting
for 200−300 ms after an expected stimulus in a random series of distractors (the
so-called oddball EEG experimental paradigm) [13]. Examples of averaged P300
response are depicted with red lines with standard errors in Figures 2, 3, 4, and 5.
The P300 responses are commonly used in BCI approaches and are considered to
be the most reliable ERPs [16,21] with even beginner subjects. The results in [20]
indicated that the experiments achieved information transfer rates of 7.8 bit/min
on average and 27 bit/min for the best subject. A very recent report [7] addition-
ally confirmed superiority of the tactile BCI (tBCI) in comparison with visual
and auditory modalities tested with a locked–in syndrome (LIS) subject [14].

This paper reports improvement of our previously reported finger stimulus
tBCI [10] based on P300 responses evoked by tactile stimulus delivered via vi-
brotactile transducers attached to five positions on the subject’s chest this time.
The proposal is similar to the previously reported waist positions based tBCI
reported in [1] with a difference that we propose to use the chest area simulation
which simplifies a vehicular robot operation in comparison to our previous hand-
and head-stimulus–based tBCI solutions reported in [10,9].

The rest of the paper is organized as follows. The next section introduces
the materials and methods used in the study. It also outlines the experiments
conducted. The results obtained in electroencephalogram online and offline ex-
periments with five BCI subjects are then discussed. Finally, conclusions are
formulated and directions for future research are outlined.

2 Materials and Methods

Five volunteer male BCI subjects participated in the experiments. The subjects’
mean age was 26, with a standard deviation of 9.5. All the experiments were
performed at the Life Science Center of TARA, University of Tsukuba, Japan.
The online (real-time) EEG tBCI paradigm experiments were conducted in ac-
cordance with the WMA Declaration of Helsinki - Ethical Principles for Medical
Research Involving Human Subjects.

2.1 Tactile Stimulus Generation

The tactile stimulus was delivered as sinusoidal wave generated by a portable
computer with MAX/MSP software [4]. The stimuli were delivered via five chan-
nel outputs of an external digital-to-analog signal converter RME Fireface UCX
coupled with the two acoustic YAMAHA P4050 power amplifiers (four acoustic
frequency channels each). The stimuli were delivered to the subjects’ chest lo-
cations via the tactile transducers HiWave HIAX25C10-8/HS operating in the
acoustic frequency spectrum of 100− 20, 000 Hz, as depicted in Figure 1. Each
transducer in the experiments was set to emit a sinusoidal wave at 200 Hz to
match the transducer’s resonance frequency. Tactile impulses were designed to
stimulate the Pacini endings (fast-adapting type II afferent type tactile sensory
innervation receptors) which are the large receptive field mechanoreceptors in
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Fig. 1. Subject wearing EEG cap with 16 active electrodes attached to the g.USBamp
amplifier. The five vibrotactile transducers are attached to an elastic belt on the subject
chest. Small vehicle robot by LEGO MINDSTROMS, operated via tBCI application
developed by the authors, is placed on the floor in front of the subject in the picture.

deeper layers of human skin [5]. The training instructions were presented visu-
ally by means of the BCI2000 program with numbers 1 − 5 representing robot
movement directions (see Table 2) communicated via vibrotactile transducers
attached to the subject’s chest (see Figure 1).

2.2 EEG tBCI Experiment

EEG signals were captured with an EEG amplifier system g.USBamp by g.tec
Medical Engineering GmbH, Austria, using 16 active electrodes. The electrodes
were attached to the head locations: Cz, Pz, P3, P4, C3, C4, CP5, CP6, P1,
P2, POz, C1, C2, FC1, FC2, and FCz, as in the 10/10 extended international
system [6] (see the topographic plot in the top panel of Figure 2). The ground
electrode was attached to FPz position and reference to the left earlobe re-
spectively. No electromagnetic interference was observed from the vibrotactile
transducers operating in higher frequencies comparing to the EEG frequency
spectrum. Details of the EEG experimental protocol are summarized in Table 1.
The captured EEG signals were processed online by BCI2000-based applica-
tion [16], using a stepwise linear discriminant analysis (SWLDA) classifier [8,18]
with features drawn from the 0− 650 ms ERP intervals. Additionally in offline
mode the classification accuracy was compared and improved using linear SVM
classifier [2]. The EEG recording sampling rate was set at 512 Hz, the high pass
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Table 1. Conditions of the EEG experiment

Number of subjects 5

Tactile stimulus length 100 ms

Stimulus frequency 200 Hz

Inter-stimulus-interval (ISI) 400 ms

EEG recording system g.USBamp active EEG electrodes system.

Number of the EEG channels 16

EEG electrode positions Cz, Pz, P3, P4, C3, C4, CP5, CP6, P1,
P2, POz, C1, C2, FC1, FC2, FCz

Reference and ground electrodes earlobe and FPz

Stimulus generation 5 HIAX25C10-8 transducers

Number of trials used by SWLDA (SVM) 7 (1)

Table 2. Interactive vehicular robot driving application commands encoded with the
chest position numbers.

Chest position number Command

1 go left (−90◦)
2 go straight–left (−45◦)
3 go straight (0◦)
4 go straight–right (45◦)
5 go right (90◦)

filter at 0.1 Hz, and the low pass filter at 60 Hz. The ISI was 400 ms, and each
stimulus duration was 100 ms. The subjects were instructed to spell out the num-
ber sequences (corresponding to the interactive robotic application commands
shown in Table 2) communicated by the transducers in each session. Each target
was presented seven times in a single command trial. Each subject performed
three experimental sessions (randomized 35 targets and 140 non−targets each),
which were later averaged for the online SWLDA classifier case or treated as sin-
gle trial (only the first ERP was used from a sequence of seven) for linear SVM,
as discussed in a next section. The first online tBCI session was a subject prac-
tice, the second was used for training the classifiers, while the last experimental
session was used for testing interfacing accuracy.

3 Results

This section discusses the results obtained in the EEG online and offline data pro-
cessing experiments, which are summarized in in Table 3 and Figures 2, 3, 4, and 5.
All the participating in the study tBCI subjects scored well above the chance
level of 20%, reaching an ITR in the range from 0.64 bit/min to 5.14 bit/min
in case of the online BCI experiment with SWLDA classifier, which may be
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Fig. 2. All the five subjects grand mean averaged results of the chest stimulation EEG
experiment. The left panel presents the head topographic plot of the target versus
non − target area under the curve (AUC), a measure commonly used in machine
learning intra–class discriminative analysis. (AUC > 0.5 is usually assumed to be
confirmation of feature separability [19]). The top right panel presents the largest
difference as obtained from the data displayed in the bottom panel. The topographic
plot also depicts the electrode positions. The fact that all the electrodes received similar
AUC values (red) supports the initial electrode placement. The second panel from the
top presents averaged SEP responses to the target stimuli (note the clear P300 response
in the range of 350− 600 ms). The third panel presents averaged SEP responses to the
non− target stimuli (no P300 observed). Finally, the bottom panel presents the AUC
of target versus non− target responses (again, P300 could easily be identified).
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Fig. 3. All five subjects grand mean averaged results for each electrode plotted sepa-
rately. The red and blue lines depict targets and non–targets respectively together with
standard error bars. The P300 related responses could be observed in the 350−650 ms
latencies.
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Fig. 4. Averaged results for each electrode separately of the subject #3 for whom P300
response was dominating leading for the best latency used in classification. The red
and blue lines depict targets and non–targets respectively together with standard error
bars.

Fig. 5. Averaged results for each electrode separately of the subject #2 for whom
N200 response was significant leading for improved early latency used in classification.
Observe the very short latency around 200ms where the standard error bars don’t
overlap. The red and blue lines depict targets and non–targets respectively together
with standard error bars.
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Table 3. The chest positions stimulation EEG experiment accuracy and ITR scores.
The theoretical chance level was 20%. For the SWLDA classifier, features were derived
from the averages of the seven ERPs of all the subjects. In case of the linear SVM
classifier only single trials (sequences) were used. Observe the increase in ITR with
single trial classification in case of the linear SVM classifier utilization.

SWLDA classifier [8,18]

Subject Number of averaged trials Maximum accuracy ITR

#1 7 40% 0.64 bit/min
#2 7 60% 2.36 bit/min
#3 7 40% 0.64 bit/min
#4 7 80% 5.14 bit/min
#5 7 60% 2.36 bit/min

Offline linear SVM classifier [2] based improvement

Subject Number of averaged trials Maximum accuracy ITR

#1 1 100% 69.65 bit/min
#2 1 60% 16.53 bit/min
#3 1 40% 4.53 bit/min
#4 1 80% 36.00 bit/min
#5 1 60% 16.53 bit/min

considered to be a good outcome for online vehicular robot driving experiments.
The ITR was calculated as follows [17]:

ITR = V · R (1)

R = log2N + P · log2P + (1− P ) · log2
(
1− P

N − 1

)
, (2)

where R stands for the number of bits/selection; N is the number of classes (5
in this study); P is the classifier accuracy (see Table 3); and V is the classifi-
cation speed in selections/minute (4.3 selections/minute for this study in case
of averaging of seven responses in online SWLDA case or 30 selections/minute
for the single trial based linear SVM classifier). The maximum ITR possible for
the BCI subjects to achieve in the settings presented were 5.14 bit/min and
69.65 bit/min, for seven averaged and single trial cases respectively.

4 Conclusions

This case study demonstrated results obtained with a novel five–commands and
chest locations based tBCI paradigm developed and used in experiments with
five “body–able” subjects. The proposed interface could be used for a real–time
operation of the robotic vehicle. The experiment results obtained in this study
confirmed the validity of the chest tBCI for interactive applications and the
possibility to further improve the results with utilization of the single trial based
linear SVM classifier.
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The EEG experiment with the paradigm has confirmed that tactile stimuli can
be used to operate robotic devices with five commands and with the interfacing
rate ranging from 0.64 bit/min to 5.14 bit/min for online case using SWLDA
and 4.53 bit/min to 69.95 bit/min in the offline post processing case with linear
SVM classifier respectively.

The results presented offer a step forward in the development of novel neu-
rotechnology applications. Due to the still not very high interfacing rate achieved
in online BCI case among the subjects, the current paradigm would obviously
need improvements and modifications to implement also online the proposed and
tested offline linear SVM classifier based processing. These needs determine the
major lines of study for future research. However, even in its current form, the
proposed tBCI can be regarded as a practical solution for LIS patients (locked
into their own bodies despite often intact cognitive functioning), who cannot use
vision or auditory based interfaces due to sensory or other disabilities.

We plan to continue this line of the tactile BCI research in order to further
optimize the signal processing and machine learning (classification) methods.
Next we will test the paradigm with the LIS patients in need for BCI technology.
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